IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v175y2013i2p94-115.html
   My bibliography  Save this article

Panel unit root tests in the presence of a multifactor error structure

Author

Listed:
  • Pesaran, M. Hashem
  • Vanessa Smith, L.
  • Yamagata, Takashi

Abstract

This paper extends the cross-sectionally augmented panel unit root test (CIPS) proposed by Pesaran (2007) to the case of a multifactor error structure, and proposes a new panel unit root test based on a simple average of cross-sectionally augmented Sargan–Bhargava statistics (CSB). The basic idea is to exploit information regarding the m unobserved factors that are shared by k observed time series in addition to the series under consideration. Initially, we develop the tests assuming that m0, the true number of factors, is known and show that the limit distribution of the tests does not depend on any nuisance parameters, so long as k≥m0−1. Small sample properties of the tests are investigated by Monte Carlo experiments and are shown to be satisfactory. Particularly, the proposed CIPS and CSB tests have the correct size for all combinations of the cross section (N) and time series (T) dimensions considered. The power of both tests rises with N and T, although the CSB test performs better than the CIPS test for smaller sample sizes. The various testing procedures are illustrated with empirical applications to real interest rates and real equity prices across countries.

Suggested Citation

  • Pesaran, M. Hashem & Vanessa Smith, L. & Yamagata, Takashi, 2013. "Panel unit root tests in the presence of a multifactor error structure," Journal of Econometrics, Elsevier, vol. 175(2), pages 94-115.
  • Handle: RePEc:eee:econom:v:175:y:2013:i:2:p:94-115
    DOI: 10.1016/j.jeconom.2013.02.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407613000353
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Cerrato, Mario & Sarantis, Nicholas, 2007. "A bootstrap panel unit root test under cross-sectional dependence, with an application to PPP," Computational Statistics & Data Analysis, Elsevier, vol. 51(8), pages 4028-4037, May.
    2. Natalia Bailey & George Kapetanios & M. Hashem Pesaran, 2016. "Exponent of Cross‐Sectional Dependence: Estimation and Inference," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(6), pages 929-960, September.
    3. Filippo di Mauro & L. Vanessa Smith & Stephane Dees & M. Hashem Pesaran, 2007. "Exploring the international linkages of the euro area: a global VAR analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(1), pages 1-38.
    4. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    5. Moon, Hyungsik Roger & Perron, Benoit & Phillips, Peter C.B., 2007. "Incidental trends and the power of panel unit root tests," Journal of Econometrics, Elsevier, vol. 141(2), pages 416-459, December.
    6. Westerlund, Joakim & Larsson, Rolf, 2009. "A Note On The Pooling Of Individual Panic Unit Root Tests," Econometric Theory, Cambridge University Press, vol. 25(06), pages 1851-1868, December.
    7. Sargan, John Denis & Bhargava, Alok, 1983. "Testing Residuals from Least Squares Regression for Being Generated by the Gaussian Random Walk," Econometrica, Econometric Society, vol. 51(1), pages 153-174, January.
    8. Elliott, Graham, 1999. "Efficient Tests for a Unit Root When the Initial Observation Is Drawn from Its Unconditional Distribution," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(3), pages 767-783, August.
    9. Moon, H.R.Hyungsik Roger & Perron, Benoit, 2004. "Testing for a unit root in panels with dynamic factors," Journal of Econometrics, Elsevier, vol. 122(1), pages 81-126, September.
    10. M. Hashem Pesaran, 2007. "A simple panel unit root test in the presence of cross-section dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(2), pages 265-312.
    11. Palm, Franz C. & Smeekes, Stephan & Urbain, Jean-Pierre, 2011. "Cross-sectional dependence robust block bootstrap panel unit root tests," Journal of Econometrics, Elsevier, vol. 163(1), pages 85-104, July.
    12. Peter C. B. Phillips & Donggyu Sul, 2003. "Dynamic panel estimation and homogeneity testing under cross section dependence *," Econometrics Journal, Royal Economic Society, vol. 6(1), pages 217-259, June.
    13. Westerlund, Joakim & Breitung, Jörg, 2009. "Myths and Facts about Panel Unit Root Tests," Working Papers in Economics 380, University of Gothenburg, Department of Economics.
    14. Chang, Yoosoon, 2004. "Bootstrap unit root tests in panels with cross-sectional dependency," Journal of Econometrics, Elsevier, vol. 120(2), pages 263-293, June.
    15. Chang, Yoosoon, 2002. "Nonlinear IV unit root tests in panels with cross-sectional dependency," Journal of Econometrics, Elsevier, vol. 110(2), pages 261-292, October.
    16. Leybourne, S J, 1995. "Testing for Unit Roots Using Forward and Reverse Dickey-Fuller Regressions," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 57(4), pages 559-571, November.
    17. Sandra Eickmeier, 2009. "Comovements and heterogeneity in the euro area analyzed in a non-stationary dynamic factor model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(6), pages 933-959.
    18. Alexander Chudik & M. Hashem Pesaran & Elisa Tosetti, 2011. "Weak and strong cross‐section dependence and estimation of large panels," Econometrics Journal, Royal Economic Society, vol. 14(1), pages 45-90, February.
    19. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    20. Elliott, Graham & Jansson, Michael, 2003. "Testing for unit roots with stationary covariates," Journal of Econometrics, Elsevier, vol. 115(1), pages 75-89, July.
    21. Perron, Pierre & Rodriguez, Gabriel, 2003. "GLS detrending, efficient unit root tests and structural change," Journal of Econometrics, Elsevier, vol. 115(1), pages 1-27, July.
    22. M. Hashem Pesaran & Yongcheol Shin & Richard J. Smith, 2001. "Bounds testing approaches to the analysis of level relationships," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(3), pages 289-326.
    23. Timothy K. Chue & In Choi, 2007. "Subsampling hypothesis tests for nonstationary panels with applications to exchange rates and stock prices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(2), pages 233-264.
    24. Bai, Jushan & Ng, Serena, 2010. "Panel Unit Root Tests With Cross-Section Dependence: A Further Investigation," Econometric Theory, Cambridge University Press, vol. 26(04), pages 1088-1114, August.
    25. Elliott, Graham & Rothenberg, Thomas J & Stock, James H, 1996. "Efficient Tests for an Autoregressive Unit Root," Econometrica, Econometric Society, vol. 64(4), pages 813-836, July.
    26. Harris, David & Harvey, David I. & Leybourne, Stephen J. & Sakkas, Nikolaos D., 2010. "Local Asymptotic Power Of The Im-Pesaran-Shin Panel Unit Root Test And The Impact Of Initial Observations," Econometric Theory, Cambridge University Press, vol. 26(01), pages 311-324, February.
    27. Im, Kyung So & Pesaran, M. Hashem & Shin, Yongcheol, 2003. "Testing for unit roots in heterogeneous panels," Journal of Econometrics, Elsevier, vol. 115(1), pages 53-74, July.
    28. Breitung, J rg & Das, Samarjit, 2008. "Testing For Unit Roots In Panels With A Factor Structure," Econometric Theory, Cambridge University Press, vol. 24(01), pages 88-108, February.
    29. Hadri, Kaddour & Kurozumi, Eiji, 2011. "A Locally Optimal Test for No Unit Root in Cross-sectionally Dependent Panel Data," Hitotsubashi Journal of Economics, Hitotsubashi University, vol. 52(2), pages 165-184, December.
    30. L. Vanessa Smith & Stephen Leybourne & Tae-Hwan Kim & Paul Newbold, 2004. "More powerful panel data unit root tests with an application to mean reversion in real exchange rates," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 19(2), pages 147-170.
    31. Banerjee, Anindya, 1999. " Panel Data Unit Roots and Cointegration: An Overview," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(0), pages 607-629, Special I.
    32. Hansen, Bruce E., 1995. "Rethinking the Univariate Approach to Unit Root Testing: Using Covariates to Increase Power," Econometric Theory, Cambridge University Press, vol. 11(05), pages 1148-1171, October.
    33. Levin, Andrew & Lin, Chien-Fu & James Chu, Chia-Shang, 2002. "Unit root tests in panel data: asymptotic and finite-sample properties," Journal of Econometrics, Elsevier, vol. 108(1), pages 1-24, May.
    34. Maddala, G S & Wu, Shaowen, 1999. " A Comparative Study of Unit Root Tests with Panel Data and a New Simple Test," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(0), pages 631-652, Special I.
    35. Badi H. Baltagi & Chihwa Kao, 2000. "Nonstationary Panels, Cointegration in Panels and Dynamic Panels: A Survey," Center for Policy Research Working Papers 16, Center for Policy Research, Maxwell School, Syracuse University.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Panel unit root tests; Cross section dependence; Multifactor error structure; Fisher inflation parity; Real equity prices;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:175:y:2013:i:2:p:94-115. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.