IDEAS home Printed from
   My bibliography  Save this paper

Weak and Strong Cross Section Dependence and Estimation of Large Panels


  • Chudik, A.
  • Pesaran, M.H.
  • Tosetti, E.


This paper introduces the concepts of time-specific weak and strong cross section dependence. A double-indexed process is said to be cross sectionally weakly dependent at a given point in time, t, if its weighted average along the cross section dimension (N) converges to its expectation in quadratic mean, as N is increased without bounds for all weights that satisfy certain 'granularity' conditions. Relationship with the notions of weak and strong common factors is investigated and an application to the estimation of panel data models with an infinite number of weak factors and a finite number of strong factors is also considered. The paper concludes with a set of Monte Carlo experiments where the small sample properties of estimators based on principal components and CCE estimators are investigated and compared under various assumptions on the nature of the unobserved common effects.

Suggested Citation

  • Chudik, A. & Pesaran, M.H. & Tosetti, E., 2009. "Weak and Strong Cross Section Dependence and Estimation of Large Panels," Cambridge Working Papers in Economics 0924, Faculty of Economics, University of Cambridge.
  • Handle: RePEc:cam:camdae:0924

    Download full text from publisher

    File URL:
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Kapetanios, George & Marcellino, Massimiliano, 2010. "Factor-GMM estimation with large sets of possibly weak instruments," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2655-2675, November.
    2. Ross, Stephen A., 1976. "The arbitrage theory of capital asset pricing," Journal of Economic Theory, Elsevier, vol. 13(3), pages 341-360, December.
    3. Forni, Mario & Lippi, Marco, 2001. "The Generalized Dynamic Factor Model: Representation Theory," Econometric Theory, Cambridge University Press, vol. 17(06), pages 1113-1141, December.
    4. Kapetanios, G. & Pesaran, M. Hashem & Yamagata, T., 2011. "Panels with non-stationary multifactor error structures," Journal of Econometrics, Elsevier, vol. 160(2), pages 326-348, February.
    5. Coakley, Jerry & Fuertes, Ana-Maria & Smith, Ron, 2006. "Unobserved heterogeneity in panel time series models," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2361-2380, May.
    6. M. Hashem Pesaran, 2007. "A simple panel unit root test in the presence of cross-section dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(2), pages 265-312.
    7. Chudik, Alexander & Pesaran, M. Hashem, 2011. "Infinite-dimensional VARs and factor models," Journal of Econometrics, Elsevier, vol. 163(1), pages 4-22, July.
    8. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    9. Chamberlain, Gary, 1983. "Funds, Factors, and Diversification in Arbitrage Pricing Models," Econometrica, Econometric Society, vol. 51(5), pages 1305-1323, September.
    10. Ingersoll, Jonathan E, Jr, 1984. " Some Results in the Theory of Arbitrage Pricing," Journal of Finance, American Finance Association, vol. 39(4), pages 1021-1039, September.
    11. Gregory, Allan W. & Head, Allen C., 1999. "Common and country-specific fluctuations in productivity, investment, and the current account," Journal of Monetary Economics, Elsevier, vol. 44(3), pages 423-451, December.
    12. Jerry Coakley & Ana-Maria Fuertes & Ron Smith, 2002. "A Principal Components Approach to Cross-Section Dependence in Panels," 10th International Conference on Panel Data, Berlin, July 5-6, 2002 B5-3, International Conferences on Panel Data.
    13. Mario Forni & Lucrezia Reichlin, 1998. "Let's Get Real: A Factor Analytical Approach to Disaggregated Business Cycle Dynamics," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 453-473.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Panels; Strong and Weak Cross Section Dependence; Weak and Strong Factors;

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cam:camdae:0924. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Jake Dyer). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.