IDEAS home Printed from https://ideas.repec.org/p/ces/ceswps/_2689.html
   My bibliography  Save this paper

Weak and Strong Cross Section Dependence and Estimation of Large Panels

Author

Listed:
  • Alexander Chudik
  • M. Hashem Pesaran
  • Elisa Tosetti

Abstract

This paper introduces the concepts of time-specific weak and strong cross section dependence. A double-indexed process is said to be cross sectionally weakly dependent at a given point in time, t, if its weighted average along the cross section dimension (N) converges to its expectation in quadratic mean, as N is increased without bounds for all weights that satisfy certain ‘granularity’ conditions. Relationship with the notions of weak and strong common factors is investigated and an application to the estimation of panel data models with an infinite number of weak factors and a finite number of strong factors is also considered. The paper concludes with a set of Monte Carlo experiments where the small sample properties of estimators based on principal components and CCE estimators are investigated and compared under various assumptions on the nature of the unobserved common effects.

Suggested Citation

  • Alexander Chudik & M. Hashem Pesaran & Elisa Tosetti, 2009. "Weak and Strong Cross Section Dependence and Estimation of Large Panels," CESifo Working Paper Series 2689, CESifo.
  • Handle: RePEc:ces:ceswps:_2689
    as

    Download full text from publisher

    File URL: https://www.cesifo.org/DocDL/cesifo1_wp2689.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Kapetanios, George & Marcellino, Massimiliano, 2010. "Factor-GMM estimation with large sets of possibly weak instruments," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2655-2675, November.
    2. Ross, Stephen A., 1976. "The arbitrage theory of capital asset pricing," Journal of Economic Theory, Elsevier, vol. 13(3), pages 341-360, December.
    3. Forni, Mario & Lippi, Marco, 2001. "The Generalized Dynamic Factor Model: Representation Theory," Econometric Theory, Cambridge University Press, vol. 17(6), pages 1113-1141, December.
    4. Coakley, Jerry & Fuertes, Ana-Maria & Smith, Ron, 2006. "Unobserved heterogeneity in panel time series models," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2361-2380, May.
    5. George Kapetanios & M. Hashem Pesaran & Takashi Yamagata, 2006. "Panels with Nonstationary Multifactor Error Structures," CESifo Working Paper Series 1788, CESifo.
    6. M. Hashem Pesaran, 2007. "A simple panel unit root test in the presence of cross-section dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(2), pages 265-312.
    7. Pesaran, M. Hashem & Tosetti, Elisa, 2011. "Large panels with common factors and spatial correlation," Journal of Econometrics, Elsevier, vol. 161(2), pages 182-202, April.
    8. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    9. Chamberlain, Gary, 1983. "Funds, Factors, and Diversification in Arbitrage Pricing Models," Econometrica, Econometric Society, vol. 51(5), pages 1305-1323, September.
    10. Ingersoll, Jonathan E, Jr, 1984. "Some Results in the Theory of Arbitrage Pricing," Journal of Finance, American Finance Association, vol. 39(4), pages 1021-1039, September.
    11. Gregory, Allan W. & Head, Allen C., 1999. "Common and country-specific fluctuations in productivity, investment, and the current account," Journal of Monetary Economics, Elsevier, vol. 44(3), pages 423-451, December.
    12. Jerry Coakley & Ana-Maria Fuertes & Ron Smith, 2002. "A Principal Components Approach to Cross-Section Dependence in Panels," 10th International Conference on Panel Data, Berlin, July 5-6, 2002 B5-3, International Conferences on Panel Data.
    13. Mario Forni & Lucrezia Reichlin, 1998. "Let's Get Real: A Factor Analytical Approach to Disaggregated Business Cycle Dynamics," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 453-473.
    14. Alexander Chudik & M. Hashem Pesaran, 2007. "Infinite Dimensional VARs and Factor Models," CESifo Working Paper Series 2176, CESifo.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Natalia Bailey & George Kapetanios & M. Hashem Pesaran, 2012. "Exponent of Cross-sectional Dependence: Estimation and Inference," CESifo Working Paper Series 3722, CESifo.
    2. Antonio Afonso & Jose Alves, 2015. "The Role of Government Debt in Economic Growth," Hacienda Pública Española, IEF, vol. 215(4), pages 9-26, December.
    3. Alexander Chudik & Roland Straub, 2017. "Size, Openness, And Macroeconomic Interdependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 58, pages 33-55, February.
    4. Holly, Sean & Hashem Pesaran, M. & Yamagata, Takashi, 2011. "The spatial and temporal diffusion of house prices in the UK," Journal of Urban Economics, Elsevier, vol. 69(1), pages 2-23, January.
    5. Vasilis Sarafidis & Tom Wansbeek, 2012. "Cross-Sectional Dependence in Panel Data Analysis," Econometric Reviews, Taylor & Francis Journals, vol. 31(5), pages 483-531, September.
    6. Bussière, Matthieu & Chudik, Alexander & Sestieri, Giulia, 2009. "Modelling global trade flows: results from a GVAR model," Working Paper Series 1087, European Central Bank.
    7. Pesaran, M. Hashem & Schuermann, Til & Smith, L. Vanessa, 2009. "Forecasting economic and financial variables with global VARs," International Journal of Forecasting, Elsevier, vol. 25(4), pages 642-675, October.
    8. Kapetanios, George & Mitchell, James & Shin, Yongcheol, 2014. "A nonlinear panel data model of cross-sectional dependence," Journal of Econometrics, Elsevier, vol. 179(2), pages 134-157.
    9. Markus Eberhardt & Francis Teal, 2011. "Econometrics For Grumblers: A New Look At The Literature On Cross‐Country Growth Empirics," Journal of Economic Surveys, Wiley Blackwell, vol. 25(1), pages 109-155, February.
    10. George Kapetanios & James Mitchell & Yongcheol Shin, 2010. "A Nonlinear Panel Model of Cross-sectional Dependence," Working Papers 673, Queen Mary University of London, School of Economics and Finance.
    11. Afonso, António & Jalles, João Tovar, 2013. "Growth and productivity: The role of government debt," International Review of Economics & Finance, Elsevier, vol. 25(C), pages 384-407.
    12. Ambrogio Cesa-Bianchi & M. Hashem Pesaran & Alessandro Rebucci, 2018. "Uncertainty and Economic Activity: A Multi-Country Perspective," NBER Working Papers 24325, National Bureau of Economic Research, Inc.
    13. Natalia Bailey & George Kapetanios & M. Hashem Pesaran, 2016. "Exponent of Cross‐Sectional Dependence: Estimation and Inference," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(6), pages 929-960, September.
    14. Palm, Franz C. & Smeekes, Stephan & Urbain, Jean-Pierre, 2011. "Cross-sectional dependence robust block bootstrap panel unit root tests," Journal of Econometrics, Elsevier, vol. 163(1), pages 85-104, July.
    15. Debarsy, Nicolas & Ertur, Cem, 2010. "Testing for spatial autocorrelation in a fixed effects panel data model," Regional Science and Urban Economics, Elsevier, vol. 40(6), pages 453-470, November.
    16. Sean Holly & M. Hashem Pesaran & Takashi Yamagata, 2010. "Spatial and Temporal Diffusion of House Prices in the UK," CESifo Working Paper Series 2913, CESifo.
    17. Markus Eberhardt & Christian Helmers & Hubert Strauss, 2013. "Do Spillovers Matter When Estimating Private Returns to R&D?," The Review of Economics and Statistics, MIT Press, vol. 95(2), pages 436-448, May.
    18. Schanne, Norbert, 2012. "The formation of experts' expectations on labour markets : do they run with the pack?," IAB Discussion Paper 201225, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    19. Lam, Clifford & Yao, Qiwei & Bathia, Neil, 2011. "Estimation of latent factors for high-dimensional time series," LSE Research Online Documents on Economics 31549, London School of Economics and Political Science, LSE Library.
    20. M. Hashem Pesaran & Paolo Zaffaroni, 2009. "Optimality and Diversifiability of Mean Variance and Arbitrage Pricing Portfolios," CESifo Working Paper Series 2857, CESifo.
    21. Issouf Samaké & Yongzheng Yang, 2011. "Low-Income Countries' BRIC Linkage; Are there Growth Spillovers?," IMF Working Papers 11/267, International Monetary Fund.
    22. Alexander Chudik & Michael Fidora, 2012. "How the global perspective can help us identify structural shocks," Staff Papers, Federal Reserve Bank of Dallas, issue Dec.

    More about this item

    Keywords

    panels; strong and weak cross section dependence; weak and strong factors;

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ces:ceswps:_2689. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Klaus Wohlrabe). General contact details of provider: http://edirc.repec.org/data/cesifde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.