IDEAS home Printed from
   My bibliography  Save this paper

Panels with Nonstationary Multifactor Error Structures


  • George Kapetanios

    (Queen Mary, University of London)

  • M. Hashem Pesaran

    (Cambridge University and Trinity College, Cambridge)

  • Takashi Yamagata

    (Cambridge University)


The presence of cross-sectionally correlated error terms invalidates much inferential theory of panel data models. Recently work by Pesaran (2006) has suggested a method which makes use of cross-sectional averages to provide valid inference for stationary panel regressions with multifactor error structure. This paper extends this work and examines the important case where the unobserved common factors follow unit root processes and could be cointegrated. It is found that the presence of unit roots does not affect most theoretical results which continue to hold irrespective of the integration and the cointegration properties of the unobserved factors. This finding is further supported for small samples via an extensive Monte Carlo study. In particular, the results of the Monte Carlo study suggest that the cross-sectional average based method is robust to a wide variety of data generation processes and has lower biases than all of the alternative estimation methods considered in the paper.

Suggested Citation

  • George Kapetanios & M. Hashem Pesaran & Takashi Yamagata, 2006. "Panels with Nonstationary Multifactor Error Structures," Working Papers 569, Queen Mary University of London, School of Economics and Finance.
  • Handle: RePEc:qmw:qmwecw:569

    Download full text from publisher

    File URL:
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Andrews, Donald W. K., 1987. "Asymptotic Results for Generalized Wald Tests," Econometric Theory, Cambridge University Press, vol. 3(3), pages 348-358, June.
    2. Mario Forni & Lucrezia Reichlin, 1998. "Let's Get Real: A Factor Analytical Approach to Disaggregated Business Cycle Dynamics," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 453-473.
    3. Connor, Gregory & Korajczyk, Robert A., 1986. "Performance measurement with the arbitrage pricing theory : A new framework for analysis," Journal of Financial Economics, Elsevier, vol. 15(3), pages 373-394, March.
    4. Bai, Jushan & Kao, Chihwa & Ng, Serena, 2009. "Panel cointegration with global stochastic trends," Journal of Econometrics, Elsevier, vol. 149(1), pages 82-99, April.
    5. Chamberlain, Gary & Rothschild, Michael, 1983. "Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets," Econometrica, Econometric Society, vol. 51(5), pages 1281-1304, September.
    6. Connor, Gregory & Korajczyk, Robert A., 1988. "Risk and return in an equilibrium APT : Application of a new test methodology," Journal of Financial Economics, Elsevier, vol. 21(2), pages 255-289, September.
    7. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    8. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    9. Lee, Kevin C & Pesaran, M Hashem, 1993. "The Role of Sectoral Interactions in Wage Determination in the UK Economy," Economic Journal, Royal Economic Society, vol. 103(416), pages 21-55, January.
    10. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501, Decembrie.
    11. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    12. de Jong, Robert M. & Davidson, James, 2000. "The Functional Central Limit Theorem And Weak Convergence To Stochastic Integrals I," Econometric Theory, Cambridge University Press, vol. 16(5), pages 621-642, October.
    13. M. Hashem Pesaran, 2006. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," Econometrica, Econometric Society, vol. 74(4), pages 967-1012, July.
    14. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    15. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    16. Jerry Coakley & Ana-Maria Fuertes & Ron Smith, 2002. "A Principal Components Approach to Cross-Section Dependence in Panels," 10th International Conference on Panel Data, Berlin, July 5-6, 2002 B5-3, International Conferences on Panel Data.
    17. Pesaran M.H. & Schuermann T. & Weiner S.M., 2004. "Modeling Regional Interdependencies Using a Global Error-Correcting Macroeconometric Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 129-162, April.
    18. Peter C. B. Phillips & Hyungsik R. Moon, 1999. "Linear Regression Limit Theory for Nonstationary Panel Data," Econometrica, Econometric Society, vol. 67(5), pages 1057-1112, September.
    19. Pesaran, M. Hashem & Smith, Ron, 1995. "Estimating long-run relationships from dynamic heterogeneous panels," Journal of Econometrics, Elsevier, vol. 68(1), pages 79-113, July.
    20. de Jong, Robert M., 1997. "Central Limit Theorems for Dependent Heterogeneous Random Variables," Econometric Theory, Cambridge University Press, vol. 13(3), pages 353-367, June.
    21. Phillips,Garry D. A. & Tzavalis,Elias (ed.), 2007. "The Refinement of Econometric Estimation and Test Procedures," Cambridge Books, Cambridge University Press, number 9780521870535, November.
    22. Timothy G. Conley & Bill Dupor, 2003. "A Spatial Analysis of Sectoral Complementarity," Journal of Political Economy, University of Chicago Press, vol. 111(2), pages 311-352, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:hal:journl:peer-00768190 is not listed on IDEAS
    2. Kapetanios, G. & Pesaran, M.H., 2005. "Alternative Approaches to Estimation and Inference in Large Multifactor Panels: Small Sample Results with an Application to Modelling of Asset Returns," Cambridge Working Papers in Economics 0520, Faculty of Economics, University of Cambridge.
    3. Kapetanios, G. & Pesaran, M. Hashem & Yamagata, T., 2011. "Panels with non-stationary multifactor error structures," Journal of Econometrics, Elsevier, vol. 160(2), pages 326-348, February.
    4. Pesaran, M. Hashem & Tosetti, Elisa, 2011. "Large panels with common factors and spatial correlation," Journal of Econometrics, Elsevier, vol. 161(2), pages 182-202, April.
    5. Natalia Bailey & Sean Holly & M. Hashem Pesaran, 2016. "A Two‐Stage Approach to Spatio‐Temporal Analysis with Strong and Weak Cross‐Sectional Dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(1), pages 249-280, January.
    6. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2014. "Dynamic factor models: A review of the literature," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 73-107.
    7. Mariam Camarero & Sergi Moliner & Cecilio Tamarit, 2022. "Which are the long-run determinants of US outward FDI? Evidence using large long-memory panels," Working Papers 2022.08, International Network for Economic Research - INFER.
    8. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1014-1024, November.
    9. Norman R. Swanson & Nii Ayi Armah, 2011. "Diffusion Index Models and Index Proxies: Recent Results and New Directions," Departmental Working Papers 201114, Rutgers University, Department of Economics.
    10. Nii Ayi Armah & Norman Swanson, 2010. "Seeing Inside the Black Box: Using Diffusion Index Methodology to Construct Factor Proxies in Large Scale Macroeconomic Time Series Environments," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 476-510.
    11. Issler, João Victor & Lima, Luiz Renato, 2009. "A panel data approach to economic forecasting: The bias-corrected average forecast," Journal of Econometrics, Elsevier, vol. 152(2), pages 153-164, October.
    12. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    13. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    14. In Choi, 2012. "Panel Cointegration," Working Papers 1208, Nam Duck-Woo Economic Research Institute, Sogang University (Former Research Institute for Market Economy).
    15. Castagnetti, Carolina & Rossi, Eduardo & Trapani, Lorenzo, 2019. "A two-stage estimator for heterogeneous panel models with common factors," Econometrics and Statistics, Elsevier, vol. 11(C), pages 63-82.
    16. repec:ebl:ecbull:v:3:y:2008:i:33:p:1-18 is not listed on IDEAS
    17. Stefano Giglio & Dacheng Xiu, 2017. "Inference on Risk Premia in the Presence of Omitted Factors," NBER Working Papers 23527, National Bureau of Economic Research, Inc.
    18. Tsay, Ruey S. & Ando, Tomohiro, 2012. "Bayesian panel data analysis for exploring the impact of subprime financial crisis on the US stock market," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3345-3365.
    19. Bai, Jushan & Li, Kunpeng, 2021. "Dynamic spatial panel data models with common shocks," Journal of Econometrics, Elsevier, vol. 224(1), pages 134-160.
    20. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
    21. Tomohiro Ando & Ruey S. Tsay, 2009. "Model selection for generalized linear models with factor‐augmented predictors," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(3), pages 207-235, May.
    22. António Rua & Francisco Craveiro Dias, 2008. "Determining the number of factors in approximate factor models with global and group-specific factors," Working Papers w200809, Banco de Portugal, Economics and Research Department.

    More about this item


    Cross section dependence; Large panels; Unit roots; Principal components; Common correlated effects;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:qmw:qmwecw:569. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nicholas Owen (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.