IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/52782.html
   My bibliography  Save this paper

Panel data models with grouped factor structure under unknown group membership

Author

Listed:
  • Bai, Jushan
  • Ando, Tomohiro

Abstract

This paper studies panel data models with unobserved group factor structures. The group membership of each unit and the number of groups are left unspecified. The number of explanatory variables can be large. We estimate the model by minimizing the sum of least squared errors with a shrinkage penalty. The regressions coefficients can be homogeneous or group specific. The consistency and asymptotic normality of the estimator are established. We also introduce new $C_p$-type criteria for selecting the number of groups, the numbers of group-specific common factors and relevant regressors. Monte Carlo results show that the proposed method works well. We apply the method to the study of US mutual fund returns under homogeneous regression coefficients, and the China mainland stock market under group-specific regression coefficients.

Suggested Citation

  • Bai, Jushan & Ando, Tomohiro, 2013. "Panel data models with grouped factor structure under unknown group membership," MPRA Paper 52782, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:52782
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/52782/1/MPRA_paper_52782.pdf
    File Function: original version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Forni, Mario & Lippi, Marco, 2001. "The Generalized Dynamic Factor Model: Representation Theory," Econometric Theory, Cambridge University Press, vol. 17(06), pages 1113-1141, December.
    2. Kapetanios, G. & Pesaran, M. Hashem & Yamagata, T., 2011. "Panels with non-stationary multifactor error structures," Journal of Econometrics, Elsevier, vol. 160(2), pages 326-348, February.
    3. Pesaran, M. Hashem & Tosetti, Elisa, 2011. "Large panels with common factors and spatial correlation," Journal of Econometrics, Elsevier, vol. 161(2), pages 182-202, April.
    4. Jinyong Hahn & Guido Kuersteiner, 2002. "Asymptotically Unbiased Inference for a Dynamic Panel Model with Fixed Effects when Both "n" and "T" Are Large," Econometrica, Econometric Society, vol. 70(4), pages 1639-1657, July.
    5. Amengual, Dante & Watson, Mark W., 2007. "Consistent Estimation of the Number of Dynamic Factors in a Large N and T Panel," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 91-96, January.
    6. Chen, Nai-Fu & Roll, Richard & Ross, Stephen A, 1986. "Economic Forces and the Stock Market," The Journal of Business, University of Chicago Press, vol. 59(3), pages 383-403, July.
    7. Ayhan Kose, M. & Otrok, Christopher & Whiteman, Charles H., 2008. "Understanding the evolution of world business cycles," Journal of International Economics, Elsevier, vol. 75(1), pages 110-130, May.
    8. Bai, Jushan & Ando, Tomohiro, 2013. "Multifactor asset pricing with a large number of observable risk factors and unobservable common and group-specific factors," MPRA Paper 52785, University Library of Munich, Germany, revised Dec 2013.
    9. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    10. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    11. Arellano, Manuel, 2003. "Panel Data Econometrics," OUP Catalogue, Oxford University Press, number 9780199245291.
    12. M. Hashem Pesaran, 2006. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," Econometrica, Econometric Society, vol. 74(4), pages 967-1012, July.
    13. Sun, Yixiao X, 2005. "Estimation and Inference in Panel Structure Models," University of California at San Diego, Economics Working Paper Series qt5tf1231k, Department of Economics, UC San Diego.
    14. Chamberlain, Gary & Rothschild, Michael, 1983. "Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets," Econometrica, Econometric Society, vol. 51(5), pages 1281-1304, September.
    15. Jinyong Hahn & Whitney Newey, 2004. "Jackknife and Analytical Bias Reduction for Nonlinear Panel Models," Econometrica, Econometric Society, vol. 72(4), pages 1295-1319, July.
    16. Jushan Bai, 2009. "Panel Data Models With Interactive Fixed Effects," Econometrica, Econometric Society, vol. 77(4), pages 1229-1279, July.
    17. repec:hal:journl:peer-00796743 is not listed on IDEAS
    18. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomohiro Ando & Jushan Bai, 2015. "Asset Pricing with a General Multifactor Structure," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 13(3), pages 556-604.
    2. Jiaying Gu & Stanislav Volgushev, 2018. "Panel Data Quantile Regression with Grouped Fixed Effects," Papers 1801.05041, arXiv.org.
    3. Simone Bertoli & Jesus Fernández-Huertas Moraga, 2012. "Visa Policies, Networks and the Cliff at the Border," Working Papers 2012-12, FEDEA.
    4. Bonhomme, Stéphane & Lamadon, Thibaut & Manresa, Elena, 2017. "Discretizing Unobserved Heterogeneity," Working Paper Series 2017:21, IFAU - Institute for Evaluation of Labour Market and Education Policy.
    5. Thibaut Lamadon & Elena Manresa & Stephane Bonhomme, 2016. "Discretizing Unobserved Heterogeneity," 2016 Meeting Papers 1536, Society for Economic Dynamics.
    6. Bai, Jushan & Ando, Tomohiro, 2013. "Multifactor asset pricing with a large number of observable risk factors and unobservable common and group-specific factors," MPRA Paper 52785, University Library of Munich, Germany, revised Dec 2013.
    7. Carlos Vladimir Rodríguez-Caballero, 2016. "Panel Data with Cross-Sectional Dependence Characterized by a Multi-Level Factor Structure," CREATES Research Papers 2016-31, Department of Economics and Business Economics, Aarhus University.
    8. Dzemski, Andreas & Okui, Ryo, 2018. "Confidence Set for Group Membership," Working Papers in Economics 727, University of Gothenburg, Department of Economics.
    9. Ryo Okui & Wendun Wang, 2018. "Heterogeneous structural breaks in panel data models," Papers 1801.04672, arXiv.org.
    10. Ruiqi Liu & Anton Schick & Zuofeng Shang & Yonghui Zhang & Qiankun Zhou, 2018. "Identification and estimation in panel models with overspecified number of groups," Departmental Working Papers 2018-03, Department of Economics, Louisiana State University.
    11. Espasa, Antoni & Carlomagno Real, Guillermo, 2017. "Discovering pervasive and non-pervasive common cycles," DES - Working Papers. Statistics and Econometrics. WS 25392, Universidad Carlos III de Madrid. Departamento de Estadística.
    12. Chu, Ba, 2017. "Composite Quasi-Maximum Likelihood Estimation of Dynamic Panels with Group-Specific Heterogeneity and Spatially Dependent Errors," MPRA Paper 79709, University Library of Munich, Germany.
    13. Andreas Dzemski & Ryo Okui, 2017. "Confidence set for group membership," Papers 1801.00332, arXiv.org, revised Mar 2018.

    More about this item

    Keywords

    Clustering; penalized method; lasso; SCAD; serial and cross-sectional error correlations; factor structure;

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:52782. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.