IDEAS home Printed from https://ideas.repec.org/f/pan527.html
   My authors  Follow this author

Tomohiro Ando

Personal Details

First Name:Tomohiro
Middle Name:
Last Name:Ando
Suffix:
RePEc Short-ID:pan527
[This author has chosen not to make the email address public]

Affiliation

Melbourne Business School
University of Melbourne

Melbourne, Australia
http://www.mbs.unimelb.edu.au/

: 61 3 9349 8100
61 3 9349 8133
200 Leicester St. Carlton, Victoria. Australia 3053
RePEc:edi:bsmelau (more details at EDIRC)

Research output

as
Jump to: Working papers Articles

Working papers

  1. Ando, Tomohiro & Bai, Jushan, 2014. "A simple new test for slope homogeneity in panel data models with interactive effects," MPRA Paper 60795, University Library of Munich, Germany.
  2. Bai, Jushan & Ando, Tomohiro, 2013. "Panel data models with grouped factor structure under unknown group membership," MPRA Paper 52782, University Library of Munich, Germany.
  3. Bai, Jushan & Ando, Tomohiro, 2013. "Multifactor asset pricing with a large number of observable risk factors and unobservable common and group-specific factors," MPRA Paper 52785, University Library of Munich, Germany, revised Dec 2013.
  4. Arnold Zellner (posthumously) & Tomohiro Ando & Nalan Basturk & Lennart Hoogerheide & Herman K. van Dijk, 2012. "Bayesian Analysis of Instrumental Variable Models: Acceptance-Rejection within Direct Monte Carlo," Tinbergen Institute Discussion Papers 12-098/III, Tinbergen Institute.
  5. Arnold Zellner & Tomohiro Ando & Nalan Basturk & Lennart Hoogerheide & Herman K. van Dijk, 2011. "Instrumental Variables, Errors in Variables, and Simultaneous Equations Models: Applicability and Limitations of Direct Monte Carlo," Tinbergen Institute Discussion Papers 11-137/4, Tinbergen Institute.

Articles

  1. Tomohiro Ando & Jushan Bai, 2016. "Panel Data Models with Grouped Factor Structure Under Unknown Group Membership," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(1), pages 163-191, January.
  2. Tomohiro Ando & Jushan Bai, 2015. "Asset Pricing with a General Multifactor Structure," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 13(3), pages 556-604.
  3. Ando, Tomohiro & Bai, Jushan, 2015. "A simple new test for slope homogeneity in panel data models with interactive effects," Economics Letters, Elsevier, vol. 136(C), pages 112-117.
  4. Arnold Zellner & Tomohiro Ando & Nalan Baştürk & Lennart Hoogerheide & Herman van Dijk, 2014. "Bayesian Analysis of Instrumental Variable Models: Acceptance-Rejection within Direct Monte Carlo," Econometric Reviews, Taylor & Francis Journals, vol. 33(1-4), pages 3-35.
  5. Tomohiro Ando & Ker-Chau Li, 2014. "A Model-Averaging Approach for High-Dimensional Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 254-265, March.
  6. Tomohiro Ando & Ruey Tsay, 2014. "A Predictive Approach for Selection of Diffusion Index Models," Econometric Reviews, Taylor & Francis Journals, vol. 33(1-4), pages 68-99.
  7. Tomohiro Ando, 2014. "Bayesian corporate bond pricing and credit default swap premium models for deriving default probabilities and recovery rates," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(3), pages 454-465, March.
  8. Tsay, Ruey S. & Ando, Tomohiro, 2012. "Bayesian panel data analysis for exploring the impact of subprime financial crisis on the US stock market," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3345-3365.
  9. Tomohiro Ando & Ruey S. Tsay, 2011. "Quantile regression models with factor‐augmented predictors and information criterion," Econometrics Journal, Royal Economic Society, vol. 14(1), pages 1-24, February.
  10. Zellner, Arnold & Ando, Tomohiro, 2010. "Rejoinder," International Journal of Forecasting, Elsevier, vol. 26(2), pages 439-442, April.
  11. Zellner, Arnold & Ando, Tomohiro, 2010. "A direct Monte Carlo approach for Bayesian analysis of the seemingly unrelated regression model," Journal of Econometrics, Elsevier, vol. 159(1), pages 33-45, November.
  12. Ando, Tomohiro & Tsay, Ruey, 2010. "Predictive likelihood for Bayesian model selection and averaging," International Journal of Forecasting, Elsevier, vol. 26(4), pages 744-763, October.
  13. Zellner, Arnold & Ando, Tomohiro, 2010. "Bayesian and non-Bayesian analysis of the seemingly unrelated regression model with Student-t errors, and its application for forecasting," International Journal of Forecasting, Elsevier, vol. 26(2), pages 413-434, April.
  14. Ando, Tomohiro, 2009. "Bayesian inference for the hazard term structure with functional predictors using Bayesian predictive information criteria," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 1925-1939, April.
  15. Ando, Tomohiro, 2009. "Bayesian factor analysis with fat-tailed factors and its exact marginal likelihood," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1717-1726, September.
  16. Tomohiro Ando & Sadanori Konishi, 2009. "Nonlinear logistic discrimination via regularized radial basis functions for classifying high-dimensional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(2), pages 331-353, June.
  17. Ando, Tomohiro, 2009. "Bayesian portfolio selection using a multifactor model," International Journal of Forecasting, Elsevier, vol. 25(3), pages 550-566, July.
  18. Tomohiro Ando, 2008. "Measuring the baseline sales and the promotion effect for incense products: a Bayesian state-space modeling approach," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(4), pages 763-780, December.
  19. Tomohiro Ando, 2007. "Bayesian predictive information criterion for the evaluation of hierarchical Bayesian and empirical Bayes models," Biometrika, Biometrika Trust, vol. 94(2), pages 443-458.
  20. Sadanori Konishi, 2004. "Bayesian information criteria and smoothing parameter selection in radial basis function networks," Biometrika, Biometrika Trust, vol. 91(1), pages 27-43, March.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Bai, Jushan & Ando, Tomohiro, 2013. "Panel data models with grouped factor structure under unknown group membership," MPRA Paper 52782, University Library of Munich, Germany.

    Cited by:

    1. Tomohiro Ando & Jushan Bai, 2015. "Asset Pricing with a General Multifactor Structure," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 13(3), pages 556-604.
    2. Stéphane Bonhomme & Thibaut Lamadon & Elena Manresa, 2017. "Discretizing unobserved heterogeneity," IFS Working Papers W17/03, Institute for Fiscal Studies.
    3. Carlos Vladimir Rodríguez-Caballero, 2016. "Panel Data with Cross-Sectional Dependence Characterized by a Multi-Level Factor Structure," CREATES Research Papers 2016-31, Department of Economics and Business Economics, Aarhus University.
    4. Bai, Jushan & Ando, Tomohiro, 2013. "Multifactor asset pricing with a large number of observable risk factors and unobservable common and group-specific factors," MPRA Paper 52785, University Library of Munich, Germany, revised Dec 2013.
    5. Dzemski, Andreas & Okui, Ryo, 2018. "Confidence Set for Group Membership," Working Papers in Economics 727, University of Gothenburg, Department of Economics.
    6. Ryo Okui & Wendun Wang, 2018. "Heterogeneous structural breaks in panel data models," Papers 1801.04672, arXiv.org.
    7. Ruiqi Liu & Anton Schick & Zuofeng Shang & Yonghui Zhang & Qiankun Zhou, 2018. "Identification and estimation in panel models with overspecified number of groups," Departmental Working Papers 2018-03, Department of Economics, Louisiana State University.
    8. Simone Bertoli & Jesus Fernández-Huertas Moraga, 2012. "Visa Policies, Networks and the Cliff at the Border," Working Papers 2012-12, FEDEA.
    9. Jiaying Gu & Stanislav Volgushev, 2018. "Panel Data Quantile Regression with Grouped Fixed Effects," Papers 1801.05041, arXiv.org, revised Aug 2018.
    10. Bonhomme, Stéphane & Lamadon, Thibaut & Manresa, Elena, 2017. "Discretizing Unobserved Heterogeneity," Working Paper Series 2017:21, IFAU - Institute for Evaluation of Labour Market and Education Policy.
    11. Espasa, Antoni & Carlomagno Real, Guillermo, 2017. "Discovering pervasive and non-pervasive common cycles," DES - Working Papers. Statistics and Econometrics. WS 25392, Universidad Carlos III de Madrid. Departamento de Estadística.
    12. Chu, Ba, 2017. "Composite Quasi-Maximum Likelihood Estimation of Dynamic Panels with Group-Specific Heterogeneity and Spatially Dependent Errors," MPRA Paper 79709, University Library of Munich, Germany.
    13. Andreas Dzemski & Ryo Okui, 2017. "Confidence set for group membership," Papers 1801.00332, arXiv.org, revised Mar 2018.

  2. Bai, Jushan & Ando, Tomohiro, 2013. "Multifactor asset pricing with a large number of observable risk factors and unobservable common and group-specific factors," MPRA Paper 52785, University Library of Munich, Germany, revised Dec 2013.

    Cited by:

    1. Tomohiro Ando & Jushan Bai, 2016. "Panel Data Models with Grouped Factor Structure Under Unknown Group Membership," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(1), pages 163-191, January.

  3. Arnold Zellner (posthumously) & Tomohiro Ando & Nalan Basturk & Lennart Hoogerheide & Herman K. van Dijk, 2012. "Bayesian Analysis of Instrumental Variable Models: Acceptance-Rejection within Direct Monte Carlo," Tinbergen Institute Discussion Papers 12-098/III, Tinbergen Institute.

    Cited by:

    1. Nalan Basturk & Cem Cakmakli & Pinar Ceyhan & Herman K. van Dijk, 2013. "Posterior-Predictive Evidence on US Inflation using Phillips Curve Models with Non-Filtered Time Series," Tinbergen Institute Discussion Papers 13-011/III, Tinbergen Institute.
    2. Sylvia Frühwirth-Schnatter & Martin Halla & Alexandra Posekany & Gerald J. Pruckner & Thomas Schober, 2014. "The Quantity and Quality of Children: A Semi-Parametric Bayesian IV Approach," Economics working papers 2014-03, Department of Economics, Johannes Kepler University Linz, Austria.
    3. Nalan Basturk & Lennart Hoogerheide & Herman K. van Dijk, 2017. "Bayesian Analysis of Boundary and Near-Boundary Evidence in Econometric Models with Reduced Rank," Tinbergen Institute Discussion Papers 17-058/III, Tinbergen Institute.
    4. Martin Halla & Martina Zweimüller, 2014. "Parental Response to Early Human Capital Shocks: Evidence from the Chernobyl Accident," NRN working papers 2014-01, The Austrian Center for Labor Economics and the Analysis of the Welfare State, Johannes Kepler University Linz, Austria.
    5. Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2013. "Historical Developments in Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 13-191/III, Tinbergen Institute.
    6. Baştürk N. & Grassi S. & Hoogerheide L. & Dijk H.K. van, 2016. "Parallelization experience with four canonical econometric models using ParMitISEM," Research Memorandum 013, Maastricht University, Graduate School of Business and Economics (GSBE).
    7. Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2014. "On the Rise of Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 14-085/III, Tinbergen Institute, revised 04 Sep 2014.
    8. Nalan Basturk & Stefano Grassi & Lennart Hoogerheide & Anne Opschoor & Herman K. van Dijk, 2015. "The R-package MitISEM: Efficient and Robust Simulation Procedures for Bayesian Inference," Tinbergen Institute Discussion Papers 15-042/III, Tinbergen Institute, revised 04 Jul 2017.
    9. Nalan Basturk & Cem Cakmakli & Pinar Ceyhan & Herman K. van Dijk, 2013. "Posterior-Predictive Evidence on US Inflation using Extended New Keynesian Phillips Curve Models with Non-filtered Data," Tinbergen Institute Discussion Papers 13-090/III, Tinbergen Institute.
    10. Nalan Basturk & Cem Cakmakli & Pinar Ceyhan & Herman K. van Dijk, 2013. "Posterior-Predictive Evidence on US Inflation using Extended Phillips Curve Models with non-filtered Data," Koç University-TUSIAD Economic Research Forum Working Papers 1321, Koc University-TUSIAD Economic Research Forum.

  4. Arnold Zellner & Tomohiro Ando & Nalan Basturk & Lennart Hoogerheide & Herman K. van Dijk, 2011. "Instrumental Variables, Errors in Variables, and Simultaneous Equations Models: Applicability and Limitations of Direct Monte Carlo," Tinbergen Institute Discussion Papers 11-137/4, Tinbergen Institute.

    Cited by:

    1. Cogley, Timothy & Startz, Richard, 2012. "Bayesian IV: the normal case with multiple endogenous variables," University of California at Santa Barbara, Economics Working Paper Series qt40v0x246, Department of Economics, UC Santa Barbara.

Articles

  1. Tomohiro Ando & Jushan Bai, 2016. "Panel Data Models with Grouped Factor Structure Under Unknown Group Membership," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(1), pages 163-191, January.
    See citations under working paper version above.
  2. Tomohiro Ando & Jushan Bai, 2015. "Asset Pricing with a General Multifactor Structure," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 13(3), pages 556-604.

    Cited by:

    1. Ando, Tomohiro & Bai, Jushan, 2014. "A simple new test for slope homogeneity in panel data models with interactive effects," MPRA Paper 60795, University Library of Munich, Germany.
    2. YAMAMOTO, Yohei, 2015. "Asymptotic Inference for Common Factor Models in the Presence of Jumps," Discussion Papers 2015-05, Graduate School of Economics, Hitotsubashi University.
    3. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
    4. Isabel Casas & Eva Ferreira & Susan Orbe, 0310. "Time-varying coefficient estimation in SURE models. Application to portfolio management," CREATES Research Papers 2017-33, Department of Economics and Business Economics, Aarhus University.
    5. Kim Dukpa & Kim Yunjung & Bak Yuhyeon, 2017. "Multi-level factor analysis of bond risk premia," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 21(5), pages 1-19, December.
    6. Patrick Gagliardini & Elisa Ossola & Olivier Scaillet, 2016. "A diagnostic criterion for approximate factor structure," Papers 1612.04990, arXiv.org, revised Aug 2017.
    7. Ryo Okui & Wendun Wang, 2018. "Heterogeneous structural breaks in panel data models," Papers 1801.04672, arXiv.org.
    8. Stanislav Anatolyev & Anna Mikusheva, 2018. "Limit Theorems for Factor Models," Papers 1807.06338, arXiv.org.
    9. Lu, Lina, 2017. "Simultaneous Spatial Panel Data Models with Common Shocks," Risk and Policy Analysis Unit Working Paper RPA 17-3, Federal Reserve Bank of Boston.
    10. Eugen Ivanov & Aleksey Min & Franz Ramsauer, 2017. "Copula-Based Factor Models for Multivariate Asset Returns," Econometrics, MDPI, Open Access Journal, vol. 5(2), pages 1-24, May.

  3. Arnold Zellner & Tomohiro Ando & Nalan Baştürk & Lennart Hoogerheide & Herman van Dijk, 2014. "Bayesian Analysis of Instrumental Variable Models: Acceptance-Rejection within Direct Monte Carlo," Econometric Reviews, Taylor & Francis Journals, vol. 33(1-4), pages 3-35.
    See citations under working paper version above.
  4. Tomohiro Ando & Ker-Chau Li, 2014. "A Model-Averaging Approach for High-Dimensional Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 254-265, March.

    Cited by:

    1. Jia Chen & Degui Li & Oliver Linton & Zudi Lu, 2015. "Semiparametric model averaging of ultra-high dimensional time series," CeMMAP working papers CWP62/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Gao, Yan & Zhang, Xinyu & Wang, Shouyang & Zou, Guohua, 2016. "Model averaging based on leave-subject-out cross-validation," Journal of Econometrics, Elsevier, vol. 192(1), pages 139-151.
    3. Jeffrey S. Racine & Qi Li & Li Zheng, 2018. "Optimal Model Averaging of Mixed-Data Kernel-Weighted Spline Regressions," Department of Economics Working Papers 2018-10, McMaster University.
    4. Zhao, Shangwei & Zhou, Jianhong & Li, Hongjun, 2016. "Model averaging with high-dimensional dependent data," Economics Letters, Elsevier, vol. 148(C), pages 68-71.
    5. Zhang, Xinyu & Yu, Jihai, 2018. "Spatial weights matrix selection and model averaging for spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 203(1), pages 1-18.
    6. Cong Li & Qi Li & Jeffrey Racine & DAIQIANG ZHANG, 2017. "Optimal Model Averaging Of Varying Coefficient Models," Department of Economics Working Papers 2017-01, McMaster University.
    7. Xinyu Zhang & Dalei Yu & Guohua Zou & Hua Liang, 2016. "Optimal Model Averaging Estimation for Generalized Linear Models and Generalized Linear Mixed-Effects Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1775-1790, October.
    8. Giuseppe De Luca & Jan R. Magnus & Franco Peracchi, 2017. "Weighted-average least squares estimation of generalized linear models," EIEF Working Papers Series 1711, Einaudi Institute for Economics and Finance (EIEF), revised Aug 2017.
    9. Cheng, Tzu-Chang F. & Ing, Ching-Kang & Yu, Shu-Hui, 2015. "Toward optimal model averaging in regression models with time series errors," Journal of Econometrics, Elsevier, vol. 189(2), pages 321-334.

  5. Tomohiro Ando & Ruey Tsay, 2014. "A Predictive Approach for Selection of Diffusion Index Models," Econometric Reviews, Taylor & Francis Journals, vol. 33(1-4), pages 68-99.

    Cited by:

    1. Bai, Jushan & Ando, Tomohiro, 2013. "Multifactor asset pricing with a large number of observable risk factors and unobservable common and group-specific factors," MPRA Paper 52785, University Library of Munich, Germany, revised Dec 2013.

  6. Tomohiro Ando, 2014. "Bayesian corporate bond pricing and credit default swap premium models for deriving default probabilities and recovery rates," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(3), pages 454-465, March.

    Cited by:

    1. Jonathan Crook & David Edelman, 2014. "Special issue credit risk modelling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(3), pages 321-322, March.

  7. Tsay, Ruey S. & Ando, Tomohiro, 2012. "Bayesian panel data analysis for exploring the impact of subprime financial crisis on the US stock market," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3345-3365.

    Cited by:

    1. Bai, Jushan & Ando, Tomohiro, 2013. "Multifactor asset pricing with a large number of observable risk factors and unobservable common and group-specific factors," MPRA Paper 52785, University Library of Munich, Germany, revised Dec 2013.
    2. Vortelinos, Dimitrios I., 2016. "Evaluation of the Federal Reserve's financial-crisis timeline," International Review of Financial Analysis, Elsevier, vol. 45(C), pages 350-355.
    3. Zhu, Xiaoqian & Xie, Yongjia & Li, Jianping & Wu, Dengsheng, 2015. "Change point detection for subprime crisis in American banking: From the perspective of risk dependence," International Review of Economics & Finance, Elsevier, vol. 38(C), pages 18-28.

  8. Tomohiro Ando & Ruey S. Tsay, 2011. "Quantile regression models with factor‐augmented predictors and information criterion," Econometrics Journal, Royal Economic Society, vol. 14(1), pages 1-24, February.

    Cited by:

    1. Aslanidis, Nektarios & Christiansen, Charlotte, 2014. "Quantiles of the realized stock–bond correlation and links to the macroeconomy," Journal of Empirical Finance, Elsevier, vol. 28(C), pages 321-331.
    2. Bai, Jushan & Ando, Tomohiro, 2013. "Multifactor asset pricing with a large number of observable risk factors and unobservable common and group-specific factors," MPRA Paper 52785, University Library of Munich, Germany, revised Dec 2013.
    3. Harding, Matthew & Lamarche, Carlos, 2012. "Estimating and Testing a Quantile Regression Model with Interactive Effects," IZA Discussion Papers 6802, Institute for the Study of Labor (IZA).
    4. Vicente Maldonado, Javier de & Ruiz Ortega, Esther & González-Rivera, Gloria, 2018. "Growth in Stress," DES - Working Papers. Statistics and Econometrics. WS 26623, Universidad Carlos III de Madrid. Departamento de Estadística.
    5. Chen Jau-er, 2015. "Factor instrumental variable quantile regression," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(1), pages 71-92, February.
    6. Uribe, Jorge M. & Chuliá, Helena & Guillén, Montserrat, 2017. "Uncertainty, systemic shocks and the global banking sector: Has the crisis modified their relationship?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 50(C), pages 52-68.
    7. Siklos, Pierre L., 2012. "No coupling, no decoupling, only mutual inter-dependence : Business cycles in emerging vs. mature economies," BOFIT Discussion Papers 17/2012, Bank of Finland, Institute for Economies in Transition.
    8. Giglio, Stefano & Kelly, Bryan & Pruitt, Seth, 2016. "Systemic risk and the macroeconomy: An empirical evaluation," Journal of Financial Economics, Elsevier, vol. 119(3), pages 457-471.
    9. Shih-Kang Chao & Wolfgang K. Härdle & Ming Yuan, 2016. "Factorisable Multi-Task Quantile Regression," SFB 649 Discussion Papers SFB649DP2016-057, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    10. Gloria Gonzalez-Rivera & Esther Ruiz & Javier Vicente, 2018. "Growth in Stress," Working Papers 201805, University of California at Riverside, Department of Economics.

  9. Zellner, Arnold & Ando, Tomohiro, 2010. "Rejoinder," International Journal of Forecasting, Elsevier, vol. 26(2), pages 439-442, April.

    Cited by:

    1. Zellner, Arnold & Ando, Tomohiro, 2010. "A direct Monte Carlo approach for Bayesian analysis of the seemingly unrelated regression model," Journal of Econometrics, Elsevier, vol. 159(1), pages 33-45, November.

  10. Zellner, Arnold & Ando, Tomohiro, 2010. "A direct Monte Carlo approach for Bayesian analysis of the seemingly unrelated regression model," Journal of Econometrics, Elsevier, vol. 159(1), pages 33-45, November.

    Cited by:

    1. Hiroshi Kurata & Shun Matsuura, 2016. "Best equivariant estimator of regression coefficients in a seemingly unrelated regression model with known correlation matrix," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(4), pages 705-723, August.
    2. Nomen Nescio, 2013. "Nomen Nescio," Tinbergen Institute Discussion Papers 12-095 not issued, Tinbergen Institute.
    3. Linhan Ouyang & Yizhong Ma & Jianxiong Chen & Zhigang Zeng & Yiliu Tu, 2016. "Robust optimisation of Nd: YLF laser beam micro-drilling process using Bayesian probabilistic approach," International Journal of Production Research, Taylor & Francis Journals, vol. 54(21), pages 6644-6659, November.
    4. Wang, Min & Yang, Mingan, 2016. "Posterior property of Student-t linear regression model using objective priors," Statistics & Probability Letters, Elsevier, vol. 113(C), pages 23-29.
    5. Bert de Bruijn & Philip Hans Franses, 2012. "What drives the Quotes of Earnings Forecasters?," Tinbergen Institute Discussion Papers 12-067/4, Tinbergen Institute.
    6. Arnold Zellner (posthumously) & Tomohiro Ando & Nalan Basturk & Lennart Hoogerheide & Herman K. van Dijk, 2012. "Bayesian Analysis of Instrumental Variable Models: Acceptance-Rejection within Direct Monte Carlo," Tinbergen Institute Discussion Papers 12-098/III, Tinbergen Institute.
    7. Zhao, Li & Xu, Xingzhong, 2017. "Generalized canonical correlation variables improved estimation in high dimensional seemingly unrelated regression models," Statistics & Probability Letters, Elsevier, vol. 126(C), pages 119-126.

  11. Ando, Tomohiro & Tsay, Ruey, 2010. "Predictive likelihood for Bayesian model selection and averaging," International Journal of Forecasting, Elsevier, vol. 26(4), pages 744-763, October.

    Cited by:

    1. Tsay, Ruey S. & Ando, Tomohiro, 2012. "Bayesian panel data analysis for exploring the impact of subprime financial crisis on the US stock market," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3345-3365.

  12. Zellner, Arnold & Ando, Tomohiro, 2010. "Bayesian and non-Bayesian analysis of the seemingly unrelated regression model with Student-t errors, and its application for forecasting," International Journal of Forecasting, Elsevier, vol. 26(2), pages 413-434, April.

    Cited by:

    1. Nomen Nescio, 2013. "Nomen Nescio," Tinbergen Institute Discussion Papers 12-095 not issued, Tinbergen Institute.
    2. Arnold Zellner (posthumously) & Tomohiro Ando & Nalan Basturk & Lennart Hoogerheide & Herman K. van Dijk, 2012. "Bayesian Analysis of Instrumental Variable Models: Acceptance-Rejection within Direct Monte Carlo," Tinbergen Institute Discussion Papers 12-098/III, Tinbergen Institute.
    3. Zellner, Arnold & Ando, Tomohiro, 2010. "A direct Monte Carlo approach for Bayesian analysis of the seemingly unrelated regression model," Journal of Econometrics, Elsevier, vol. 159(1), pages 33-45, November.

  13. Ando, Tomohiro, 2009. "Bayesian factor analysis with fat-tailed factors and its exact marginal likelihood," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1717-1726, September.

    Cited by:

    1. Tsay, Ruey S. & Ando, Tomohiro, 2012. "Bayesian panel data analysis for exploring the impact of subprime financial crisis on the US stock market," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3345-3365.
    2. Leung, Dennis & Drton, Mathias, 2016. "Order-invariant prior specification in Bayesian factor analysis," Statistics & Probability Letters, Elsevier, vol. 111(C), pages 60-66.

  14. Ando, Tomohiro, 2009. "Bayesian portfolio selection using a multifactor model," International Journal of Forecasting, Elsevier, vol. 25(3), pages 550-566, July.

    Cited by:

    1. Tomohiro Ando, 2012. "Bayesian portfolio selection under a multifactor asset return model with predictive model selection," Global Business and Economics Review, Inderscience Enterprises Ltd, vol. 14(1/2), pages 77-101.

  15. Tomohiro Ando, 2008. "Measuring the baseline sales and the promotion effect for incense products: a Bayesian state-space modeling approach," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(4), pages 763-780, December.

    Cited by:

    1. Epstein, Leonardo D. & Flores, Arturo A. & Goodstein, Ronald C. & Milberg, Sandra J., 2016. "A new approach to measuring retail promotion effectiveness: A case of store traffic," Journal of Business Research, Elsevier, vol. 69(10), pages 4394-4402.

  16. Tomohiro Ando, 2007. "Bayesian predictive information criterion for the evaluation of hierarchical Bayesian and empirical Bayes models," Biometrika, Biometrika Trust, vol. 94(2), pages 443-458.

    Cited by:

    1. Ando, Tomohiro, 2009. "Bayesian portfolio selection using a multifactor model," International Journal of Forecasting, Elsevier, vol. 25(3), pages 550-566, July.
    2. Abanto-Valle, C.A. & Bandyopadhyay, D. & Lachos, V.H. & Enriquez, I., 2010. "Robust Bayesian analysis of heavy-tailed stochastic volatility models using scale mixtures of normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 2883-2898, December.
    3. José L. Gallizo & Jordi Moreno & Manuel Salvador, 2016. "Banking Efficiency in the Enlarged European Union: Financial Crisis and Convergence," International Finance, Wiley Blackwell, vol. 19(1), pages 66-88, April.
    4. Cristina Mollica & Luca Tardella, 2017. "Bayesian Plackett–Luce Mixture Models for Partially Ranked Data," Psychometrika, Springer;The Psychometric Society, vol. 82(2), pages 442-458, June.
    5. So, Mike K.P. & Chan, Raymond K.S., 2014. "Bayesian analysis of tail asymmetry based on a threshold extreme value model," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 568-587.
    6. Yuki Kawakubo & Tatsuya Kubokawa & Muni S. Srivastava, 2015. "A Variant of AIC Using Bayesian Marginal Likelihood," CIRJE F-Series CIRJE-F-971, CIRJE, Faculty of Economics, University of Tokyo.
    7. Bai, Jushan & Ando, Tomohiro, 2013. "Multifactor asset pricing with a large number of observable risk factors and unobservable common and group-specific factors," MPRA Paper 52785, University Library of Munich, Germany, revised Dec 2013.
    8. Tsay, Ruey S. & Ando, Tomohiro, 2012. "Bayesian panel data analysis for exploring the impact of subprime financial crisis on the US stock market," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3345-3365.
    9. Tomohiro Ando, 2012. "Bayesian portfolio selection under a multifactor asset return model with predictive model selection," Global Business and Economics Review, Inderscience Enterprises Ltd, vol. 14(1/2), pages 77-101.
    10. Zellner, Arnold & Ando, Tomohiro, 2010. "Bayesian and non-Bayesian analysis of the seemingly unrelated regression model with Student-t errors, and its application for forecasting," International Journal of Forecasting, Elsevier, vol. 26(2), pages 413-434, April.
    11. Ando, Tomohiro, 2009. "Bayesian factor analysis with fat-tailed factors and its exact marginal likelihood," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1717-1726, September.
    12. Wang, Yixin & So, Mike K.P., 2016. "A Bayesian hierarchical model for spatial extremes with multiple durations," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 39-56.
    13. Jincheol Park & Shili Lin, 2017. "A random effect model for reconstruction of spatial chromatin structure," Biometrics, The International Biometric Society, vol. 73(1), pages 52-62, March.
    14. Zellner, Arnold & Ando, Tomohiro, 2010. "A direct Monte Carlo approach for Bayesian analysis of the seemingly unrelated regression model," Journal of Econometrics, Elsevier, vol. 159(1), pages 33-45, November.
    15. Ando, Tomohiro, 2009. "Bayesian inference for the hazard term structure with functional predictors using Bayesian predictive information criteria," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 1925-1939, April.
    16. Nandram Balgobin, 2016. "Bayesian Predictive Inference of a Proportion Under a Twofold Small-Area Model," Journal of Official Statistics, Sciendo, vol. 32(1), pages 187-208, March.
    17. Filidor Vilca & Caio L. N. Azevedo & N. Balakrishnan, 2017. "Bayesian inference for sinh-normal/independent nonlinear regression models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(11), pages 2052-2074, August.
    18. Ando, Tomohiro & Tsay, Ruey, 2010. "Predictive likelihood for Bayesian model selection and averaging," International Journal of Forecasting, Elsevier, vol. 26(4), pages 744-763, October.
    19. Yuki Kawakubo & Tatsuya Kubokawa & Muni S. Srivastava, 2018. "A Variant of AIC Based on the Bayesian Marginal Likelihood," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(1), pages 60-84, May.
    20. Liang Yulan & Kelemen Arpad, 2016. "Bayesian state space models for dynamic genetic network construction across multiple tissues," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 15(4), pages 273-290, August.

  17. Sadanori Konishi, 2004. "Bayesian information criteria and smoothing parameter selection in radial basis function networks," Biometrika, Biometrika Trust, vol. 91(1), pages 27-43, March.

    Cited by:

    1. Hidetoshi Matsui & Takamitsu Araki & Sadanori Konishi, 2011. "Multiclass Functional Discriminant Analysis and Its Application to Gesture Recognition," Journal of Classification, Springer;The Classification Society, vol. 28(2), pages 227-243, July.
    2. Duchwan Ryu & Devrim Bilgili & Önder Ergönül & Faming Liang & Nader Ebrahimi, 2018. "A Bayesian Generalized Linear Model for Crimean–Congo Hemorrhagic Fever Incidents," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(1), pages 153-170, March.
    3. Matsui, Hidetoshi, 2014. "Variable and boundary selection for functional data via multiclass logistic regression modeling," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 176-185.
    4. Ando, Tomohiro, 2009. "Bayesian factor analysis with fat-tailed factors and its exact marginal likelihood," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1717-1726, September.
    5. M. Rincón & M. Ruiz-Medina, 2012. "Wavelet-RKHS-based functional statistical classification," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(3), pages 201-217, October.
    6. Ando, Tomohiro, 2009. "Bayesian inference for the hazard term structure with functional predictors using Bayesian predictive information criteria," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 1925-1939, April.
    7. Fujii, Toru & Konishi, Sadanori, 2006. "Nonlinear regression modeling via regularized wavelets and smoothing parameter selection," Journal of Multivariate Analysis, Elsevier, vol. 97(9), pages 2023-2033, October.
    8. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    9. Masao Ueki & Kaoru Fueda, 2010. "Optimal tuning parameter estimation in maximum penalized likelihood method," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(3), pages 413-438, June.
    10. Tomohiro Ando & Sadanori Konishi, 2009. "Nonlinear logistic discrimination via regularized radial basis functions for classifying high-dimensional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(2), pages 331-353, June.
    11. Ando, Tomohiro & Tsay, Ruey, 2010. "Predictive likelihood for Bayesian model selection and averaging," International Journal of Forecasting, Elsevier, vol. 26(4), pages 744-763, October.
    12. Matsui, Hidetoshi & Konishi, Sadanori, 2011. "Variable selection for functional regression models via the L1 regularization," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3304-3310, December.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Co-authorship network on CollEc

NEP Fields

NEP is an announcement service for new working papers, with a weekly report in each of many fields. This author has had 2 papers announced in NEP. These are the fields, ordered by number of announcements, along with their dates. If the author is listed in the directory of specialists for this field, a link is also provided.
  1. NEP-ECM: Econometrics (4) 2011-10-09 2014-01-17 2014-01-17 2015-01-19
  2. NEP-CMP: Computational Economics (1) 2011-10-09

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Tomohiro Ando should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.