IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2502.13431.html
   My bibliography  Save this paper

Functional Network Autoregressive Models for Panel Data

Author

Listed:
  • Tomohiro Ando
  • Tadao Hoshino

Abstract

This study proposes a novel functional vector autoregressive framework for analyzing network interactions of functional outcomes in panel data settings. In this framework, an individual's outcome function is influenced by the outcomes of others through a simultaneous equation system. To estimate the functional parameters of interest, we need to address the endogeneity issue arising from these simultaneous interactions among outcome functions. This issue is carefully handled by developing a novel functional moment-based estimator. We establish the consistency, convergence rate, and pointwise asymptotic normality of the proposed estimator. Additionally, we discuss the estimation of marginal effects and impulse response analysis. As an empirical illustration, we analyze the demand for a bike-sharing service in the U.S. The results reveal statistically significant spatial interactions in bike availability across stations, with interaction patterns varying over the time of day.

Suggested Citation

  • Tomohiro Ando & Tadao Hoshino, 2025. "Functional Network Autoregressive Models for Panel Data," Papers 2502.13431, arXiv.org.
  • Handle: RePEc:arx:papers:2502.13431
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2502.13431
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jenish, Nazgul, 2012. "Nonparametric spatial regression under near-epoch dependence," Journal of Econometrics, Elsevier, vol. 167(1), pages 224-239.
    2. Jenish, Nazgul & Prucha, Ingmar R., 2009. "Central limit theorems and uniform laws of large numbers for arrays of random fields," Journal of Econometrics, Elsevier, vol. 150(1), pages 86-98, May.
    3. Yu, Jihai & de Jong, Robert & Lee, Lung-fei, 2008. "Quasi-maximum likelihood estimators for spatial dynamic panel data with fixed effects when both n and T are large," Journal of Econometrics, Elsevier, vol. 146(1), pages 118-134, September.
    4. Lee, Lung-fei & Yu, Jihai, 2010. "Estimation of spatial autoregressive panel data models with fixed effects," Journal of Econometrics, Elsevier, vol. 154(2), pages 165-185, February.
    5. Guido M. Kuersteiner & Ingmar R. Prucha, 2020. "Dynamic Spatial Panel Models: Networks, Common Shocks, and Sequential Exogeneity," Econometrica, Econometric Society, vol. 88(5), pages 2109-2146, September.
    6. Belloni, Alexandre & Chernozhukov, Victor & Chetverikov, Denis & Kato, Kengo, 2015. "Some new asymptotic theory for least squares series: Pointwise and uniform results," Journal of Econometrics, Elsevier, vol. 186(2), pages 345-366.
    7. Agostino Torti & Alessia Pini & Simone Vantini, 2021. "Modelling time‐varying mobility flows using function‐on‐function regression: Analysis of a bike sharing system in the city of Milan," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(1), pages 226-247, January.
    8. Xu, Xingbai & Lee, Lung-fei, 2015. "A spatial autoregressive model with a nonlinear transformation of the dependent variable," Journal of Econometrics, Elsevier, vol. 186(1), pages 1-18.
    9. Denbee, Edward & Julliard, Christian & Li, Ye & Yuan, Kathy, 2021. "Network risk and key players: A structural analysis of interbank liquidity," Journal of Financial Economics, Elsevier, vol. 141(3), pages 831-859.
    10. Kehui Chen & Hans-Georg Müller, 2012. "Modeling Repeated Functional Observations," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1599-1609, December.
    11. Xuening Zhu & Zhanrui Cai & Yanyuan Ma, 2022. "Network Functional Varying Coefficient Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(540), pages 2074-2085, October.
    12. Faghih-Imani, Ahmadreza & Eluru, Naveen, 2016. "Incorporating the impact of spatio-temporal interactions on bicycle sharing system demand: A case study of New York CitiBike system," Journal of Transport Geography, Elsevier, vol. 54(C), pages 218-227.
    13. Su, Liangjun & Hoshino, Tadao, 2016. "Sieve instrumental variable quantile regression estimation of functional coefficient models," Journal of Econometrics, Elsevier, vol. 191(1), pages 231-254.
    14. Hoshino, Tadao, 2022. "Sieve IV estimation of cross-sectional interaction models with nonparametric endogenous effect," Journal of Econometrics, Elsevier, vol. 229(2), pages 263-275.
    15. Lee, Lung-fei & Yu, Jihai, 2014. "Efficient GMM estimation of spatial dynamic panel data models with fixed effects," Journal of Econometrics, Elsevier, vol. 180(2), pages 174-197.
    16. Hyndman, Rob J. & Shahid Ullah, Md., 2007. "Robust forecasting of mortality and fertility rates: A functional data approach," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4942-4956, June.
    17. Hron, K. & Menafoglio, A. & Templ, M. & Hrůzová, K. & Filzmoser, P., 2016. "Simplicial principal component analysis for density functions in Bayes spaces," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 330-350.
    18. Liu, Xiaodong & Lee, Lung-fei & Bollinger, Christopher R., 2010. "An efficient GMM estimator of spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 159(2), pages 303-319, December.
    19. Tadao Hoshino, 2024. "Functional Spatial Autoregressive Models," Papers 2402.14763, arXiv.org, revised Oct 2024.
    20. Jenish, Nazgul & Prucha, Ingmar R., 2012. "On spatial processes and asymptotic inference under near-epoch dependence," Journal of Econometrics, Elsevier, vol. 170(1), pages 178-190.
    21. Lin, Xu & Lee, Lung-fei, 2010. "GMM estimation of spatial autoregressive models with unknown heteroskedasticity," Journal of Econometrics, Elsevier, vol. 157(1), pages 34-52, July.
    22. Delicado, P., 2011. "Dimensionality reduction when data are density functions," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 401-420, January.
    23. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tadao Hoshino, 2024. "Functional Spatial Autoregressive Models," Papers 2402.14763, arXiv.org, revised Oct 2024.
    2. Bing Su & Fukang Zhu & Ke Zhu, 2023. "Statistical inference for the logarithmic spatial heteroskedasticity model with exogenous variables," Papers 2301.06658, arXiv.org.
    3. Liangjun Su & Xi Qu, 2017. "Specification Test for Spatial Autoregressive Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(4), pages 572-584, October.
    4. Xuan Liang & Jiti Gao & Xiaodong Gong, 2019. "Time-Varying Coefficient Spatial Autoregressive Panel Data Model with Fixed Effects," Monash Econometrics and Business Statistics Working Papers 26/19, Monash University, Department of Econometrics and Business Statistics.
    5. Jeong, Hanbat & Lee, Lung-fei, 2021. "Spatial dynamic game models for coevolution of intertemporal economic decision-making and spatial networks," Journal of Economic Dynamics and Control, Elsevier, vol. 129(C).
    6. Baltagi, Badi H. & Pirotte, Alain & Yang, Zhenlin, 2021. "Diagnostic tests for homoskedasticity in spatial cross-sectional or panel models," Journal of Econometrics, Elsevier, vol. 224(2), pages 245-270.
    7. Qu, Xi & Lee, Lung-fei, 2015. "Estimating a spatial autoregressive model with an endogenous spatial weight matrix," Journal of Econometrics, Elsevier, vol. 184(2), pages 209-232.
    8. Li, Kunpeng & Lin, Wei, 2024. "Threshold spatial autoregressive model," Journal of Econometrics, Elsevier, vol. 244(1).
    9. Michele Aquaro & Natalia Bailey & M. Hashem Pesaran, 2015. "Quasi Maximum Likelihood Estimation of Spatial Models with Heterogeneous Coefficients," CESifo Working Paper Series 5428, CESifo.
    10. Qu, Xi & Lee, Lung-fei & Yang, Chao, 2021. "Estimation of a SAR model with endogenous spatial weights constructed by bilateral variables," Journal of Econometrics, Elsevier, vol. 221(1), pages 180-197.
    11. Cynthia Fan Yang, 2021. "Common factors and spatial dependence: an application to US house prices," Econometric Reviews, Taylor & Francis Journals, vol. 40(1), pages 14-50, January.
    12. Michele Aquaro & Natalia Bailey & M. Hashem Pesaran, 2021. "Estimation and inference for spatial models with heterogeneous coefficients: An application to US house prices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(1), pages 18-44, January.
    13. William C. Horrace & Hyunseok Jung & Shane Sanders, 2022. "Network Competition and Team Chemistry in the NBA," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 35-49, January.
    14. Liu, Xiaodong & Prucha, Ingmar R., 2018. "A robust test for network generated dependence," Journal of Econometrics, Elsevier, vol. 207(1), pages 92-113.
    15. Moscone, Francesco & Tosetti, Elisa & Canepa, Alessandra, 2014. "Real estate market and financial stability in US metropolitan areas: A dynamic model with spatial effects," Regional Science and Urban Economics, Elsevier, vol. 49(C), pages 129-146.
    16. Lee, Lung-fei & Yu, Jihai, 2015. "Estimation of fixed effects panel regression models with separable and nonseparable space–time filters," Journal of Econometrics, Elsevier, vol. 184(1), pages 174-192.
    17. Lina Lu, 2017. "Simultaneous Spatial Panel Data Models with Common Shocks," Supervisory Research and Analysis Working Papers RPA 17-3, Federal Reserve Bank of Boston.
    18. Pesaran, M. Hashem & Yang, Cynthia Fan, 2021. "Estimation and inference in spatial models with dominant units," Journal of Econometrics, Elsevier, vol. 221(2), pages 591-615.
    19. Hidalgo, Javier & Schafgans, Marcia, 2017. "Inference and testing breaks in large dynamic panels with strong cross sectional dependence," Journal of Econometrics, Elsevier, vol. 196(2), pages 259-274.
    20. Xu, Xingbai & Lee, Lung-fei, 2018. "Sieve maximum likelihood estimation of the spatial autoregressive Tobit model," Journal of Econometrics, Elsevier, vol. 203(1), pages 96-112.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2502.13431. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.