IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v54y2016icp218-227.html
   My bibliography  Save this article

Incorporating the impact of spatio-temporal interactions on bicycle sharing system demand: A case study of New York CitiBike system

Author

Listed:
  • Faghih-Imani, Ahmadreza
  • Eluru, Naveen

Abstract

Recent success of bicycle-sharing systems (BSS) have led to their growth around the world. Not surprisingly, there is increased research towards better understanding of the contributing factors for BSS demand. However, these research efforts have neglected to adequately consider spatial and temporal interaction of BSS station's demand (arrivals and departures). It is possible that bicycle arrival and departure rates of one BSS station are potentially inter connected with bicycle flow rates for neighboring stations. It is also plausible that the arrival and departure rates at one time period are influenced by the arrival and departure rates of earlier time periods for that station and neighboring stations. Neglecting the presence of such effects, when they are actually present will result in biased model estimates. The major objective of this study is to accommodate for spatial and temporal effects (observed and unobserved) for modelling bicycle demand employing data from New York City's bicycle-sharing system (CitiBike). Towards this end, spatial error and spatial lag models that accommodate for the influence of spatial and temporal interactions are estimated. The exogenous variables for these models are drawn from BSS infrastructure, transportation network infrastructure, land use, point of interests, and meteorological and temporal attributes. The results provide strong evidence for the presence of spatial and temporal dependency for BSS station's arrival and departure rates. A hold out sample validation exercise further emphasizes the improved accuracy of the models with spatial and temporal interactions.

Suggested Citation

  • Faghih-Imani, Ahmadreza & Eluru, Naveen, 2016. "Incorporating the impact of spatio-temporal interactions on bicycle sharing system demand: A case study of New York CitiBike system," Journal of Transport Geography, Elsevier, vol. 54(C), pages 218-227.
  • Handle: RePEc:eee:jotrge:v:54:y:2016:i:c:p:218-227
    DOI: 10.1016/j.jtrangeo.2016.06.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692316303143
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2016.06.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yu, Nannan & de Jong, Martin & Storm, Servaas & Mi, Jianing, 2013. "Spatial spillover effects of transport infrastructure: evidence from Chinese regions," Journal of Transport Geography, Elsevier, vol. 28(C), pages 56-66.
    2. Shaheen, Susan & Guzman, Stacey & Zhang, Hua, 2010. "Bikesharing in Europe, the Americas, and Asia: Past, Present, and Future," Institute of Transportation Studies, Working Paper Series qt79v822k5, Institute of Transportation Studies, UC Davis.
    3. Faghih-Imani, Ahmadreza & Eluru, Naveen, 2015. "Analysing bicycle-sharing system user destination choice preferences: Chicago’s Divvy system," Journal of Transport Geography, Elsevier, vol. 44(C), pages 53-64.
    4. Efthymiou, D. & Antoniou, C., 2013. "How do transport infrastructure and policies affect house prices and rents? Evidence from Athens, Greece," Transportation Research Part A: Policy and Practice, Elsevier, vol. 52(C), pages 1-22.
    5. Tong, Tingting & Yu, Tun-Hsiang Edward & Cho, Seong-Hoon & Jensen, Kimberly & De La Torre Ugarte, Daniel, 2013. "Evaluating the spatial spillover effects of transportation infrastructure on agricultural output across the United States," Journal of Transport Geography, Elsevier, vol. 30(C), pages 47-55.
    6. Pierre Borgnat & Patrice Abry & Patrick Flandrin & Céline Robardet & Jean-Baptiste Rouquier & Eric Fleury, 2011. "Shared Bicycles In A City: A Signal Processing And Data Analysis Perspective," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 14(03), pages 415-438.
    7. Shen, Yu & de Abreu e Silva, João & Martínez, Luis Miguel, 2014. "Assessing High-Speed Rail’s impacts on land cover change in large urban areas based on spatial mixed logit methods: a case study of Madrid Atocha railway station from 1990 to 2006," Journal of Transport Geography, Elsevier, vol. 41(C), pages 184-196.
    8. Kyle Gebhart & Robert Noland, 2014. "The impact of weather conditions on bikeshare trips in Washington, DC," Transportation, Springer, vol. 41(6), pages 1205-1225, November.
    9. Dubé, Jean & Legros, Diègo & Thériault, Marius & Des Rosiers, François, 2014. "A spatial Difference-in-Differences estimator to evaluate the effect of change in public mass transit systems on house prices," Transportation Research Part B: Methodological, Elsevier, vol. 64(C), pages 24-40.
    10. Shaheen, Susan A & Guzman, Stacey & Zhang, Hua, 2010. "Bikesharing in Europe, the Americas, and Asia: Past, Present and Future," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6qg8q6ft, Institute of Transportation Studies, UC Berkeley.
    11. Nazneen Ferdous & Chandra Bhat, 2013. "A spatial panel ordered-response model with application to the analysis of urban land-use development intensity patterns," Journal of Geographical Systems, Springer, vol. 15(1), pages 1-29, January.
    12. Wang, Xiaokun (Cara) & Kockelman, Kara M. & Lemp, Jason D., 2012. "The dynamic spatial multinomial probit model: analysis of land use change using parcel-level data," Journal of Transport Geography, Elsevier, vol. 24(C), pages 77-88.
    13. J. Paul Elhorst, 2003. "Specification and Estimation of Spatial Panel Data Models," International Regional Science Review, , vol. 26(3), pages 244-268, July.
    14. Daraban, Bogdan & Fournier, Gary M., 2008. "Incumbent responses to low-cost airline entry and exit: A spatial autoregressive panel data analysis," Research in Transportation Economics, Elsevier, vol. 24(1), pages 15-24.
    15. Faghih-Imani, Ahmadreza & Eluru, Naveen & El-Geneidy, Ahmed M. & Rabbat, Michael & Haq, Usama, 2014. "How land-use and urban form impact bicycle flows: evidence from the bicycle-sharing system (BIXI) in Montreal," Journal of Transport Geography, Elsevier, vol. 41(C), pages 306-314.
    16. O’Brien, Oliver & Cheshire, James & Batty, Michael, 2014. "Mining bicycle sharing data for generating insights into sustainable transport systems," Journal of Transport Geography, Elsevier, vol. 34(C), pages 262-273.
    17. Elliot Fishman & Simon Washington & Narelle Haworth, 2013. "Bike Share: A Synthesis of the Literature," Transport Reviews, Taylor & Francis Journals, vol. 33(2), pages 148-165, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Ying & Thomas, Tom & Brussel, Mark & van Maarseveen, Martin, 2017. "Exploring the impact of built environment factors on the use of public bikes at bike stations: Case study in Zhongshan, China," Journal of Transport Geography, Elsevier, vol. 58(C), pages 59-70.
    2. Wang, Jueyu & Lindsey, Greg, 2019. "Do new bike share stations increase member use: A quasi-experimental study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 1-11.
    3. Caulfield, Brian & O'Mahony, Margaret & Brazil, William & Weldon, Peter, 2017. "Examining usage patterns of a bike-sharing scheme in a medium sized city," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 152-161.
    4. Saberi, Meead & Ghamami, Mehrnaz & Gu, Yi & Shojaei, Mohammad Hossein (Sam) & Fishman, Elliot, 2018. "Understanding the impacts of a public transit disruption on bicycle sharing mobility patterns: A case of Tube strike in London," Journal of Transport Geography, Elsevier, vol. 66(C), pages 154-166.
    5. Todd, James & O'Brien, Oliver & Cheshire, James, 2021. "A global comparison of bicycle sharing systems," Journal of Transport Geography, Elsevier, vol. 94(C).
    6. Mix, Richard & Hurtubia, Ricardo & Raveau, Sebastián, 2022. "Optimal location of bike-sharing stations: A built environment and accessibility approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 126-142.
    7. Wang, Kailai & Akar, Gulsah, 2019. "Gender gap generators for bike share ridership: Evidence from Citi Bike system in New York City," Journal of Transport Geography, Elsevier, vol. 76(C), pages 1-9.
    8. Wang, Jueyu & Lindsey, Greg, 2019. "Neighborhood socio-demographic characteristics and bike share member patterns of use," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    9. Wang, Kailai & Akar, Gulsah & Chen, Yu-Jen, 2018. "Bike sharing differences among Millennials, Gen Xers, and Baby Boomers: Lessons learnt from New York City’s bike share," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 1-14.
    10. Médard de Chardon, Cyrille & Caruso, Geoffrey & Thomas, Isabelle, 2017. "Bicycle sharing system ‘success’ determinants," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 202-214.
    11. Faghih-Imani, Ahmadreza & Eluru, Naveen, 2016. "Examining the Impact of Sample Size in the Analysis of Bicycle Sharing Systems," 57th Transportation Research Forum (51st CTRF) Joint Conference, Toronto, Ontario, May 1-4, 2016 319259, Transportation Research Forum.
    12. Liu, Hung-Chi & Lin, Jen-Jia, 2019. "Associations of built environments with spatiotemporal patterns of public bicycle use," Journal of Transport Geography, Elsevier, vol. 74(C), pages 299-312.
    13. Médard de Chardon, Cyrille & Caruso, Geoffrey, 2015. "Estimating bike-share trips using station level data," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 260-279.
    14. Faghih-Imani, Ahmadreza & Hampshire, Robert & Marla, Lavanya & Eluru, Naveen, 2017. "An empirical analysis of bike sharing usage and rebalancing: Evidence from Barcelona and Seville," Transportation Research Part A: Policy and Practice, Elsevier, vol. 97(C), pages 177-191.
    15. Maas, Suzanne & Nikolaou, Paraskevas & Attard, Maria & Dimitriou, Loukas, 2021. "Examining spatio-temporal trip patterns of bicycle sharing systems in Southern European island cities," Research in Transportation Economics, Elsevier, vol. 86(C).
    16. Xin, Rui & Yang, Jian & Ai, Bo & Ding, Linfang & Li, Tingting & Zhu, Ruoxin, 2023. "Spatiotemporal analysis of bike mobility chain: A new perspective on mobility pattern discovery in urban bike-sharing system," Journal of Transport Geography, Elsevier, vol. 109(C).
    17. Kim, Minjun & Cho, Gi-Hyoug, 2021. "Analysis on bike-share ridership for origin-destination pairs: Effects of public transit route characteristics and land-use patterns," Journal of Transport Geography, Elsevier, vol. 93(C).
    18. Jain, Taru & Wang, Xinyi & Rose, Geoffrey & Johnson, Marilyn, 2018. "Does the role of a bicycle share system in a city change over time? A longitudinal analysis of casual users and long-term subscribers," Journal of Transport Geography, Elsevier, vol. 71(C), pages 45-57.
    19. Xiaolu Zhou, 2015. "Understanding Spatiotemporal Patterns of Biking Behavior by Analyzing Massive Bike Sharing Data in Chicago," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-20, October.
    20. Morton, Craig & Kelley, Scott & Monsuur, Fredrik & Hui, Tianwen, 2021. "A spatial analysis of demand patterns on a bicycle sharing scheme: Evidence from London," Journal of Transport Geography, Elsevier, vol. 94(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:54:y:2016:i:c:p:218-227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.