IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v159y2010i1p33-45.html
   My bibliography  Save this article

A direct Monte Carlo approach for Bayesian analysis of the seemingly unrelated regression model

Author

Listed:
  • Zellner, Arnold
  • Ando, Tomohiro

Abstract

Computationally efficient methods for Bayesian analysis of seemingly unrelated regression (SUR) models are described and applied that involve the use of a direct Monte Carlo (DMC) approach to calculate Bayesian estimation and prediction results using diffuse or informative priors. This DMC approach is employed to compute Bayesian marginal posterior densities, moments, intervals and other quantities, using data simulated from known models and also using data from an empirical example involving firms' sales. The results obtained by the DMC approach are compared to those yielded by the use of a Markov Chain Monte Carlo (MCMC) approach. It is concluded from these comparisons that the DMC approach is worthwhile and applicable to many SUR and other problems.

Suggested Citation

  • Zellner, Arnold & Ando, Tomohiro, 2010. "A direct Monte Carlo approach for Bayesian analysis of the seemingly unrelated regression model," Journal of Econometrics, Elsevier, vol. 159(1), pages 33-45, November.
  • Handle: RePEc:eee:econom:v:159:y:2010:i:1:p:33-45
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4076(10)00111-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Smith, Michael & Kohn, Robert, 2000. "Nonparametric seemingly unrelated regression," Journal of Econometrics, Elsevier, vol. 98(2), pages 257-281, October.
    2. Zellner, Arnold & Chen, Bin, 2001. "Bayesian Modeling Of Economies And Data Requirements," Macroeconomic Dynamics, Cambridge University Press, vol. 5(5), pages 673-700, November.
    3. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    4. Tomohiro Ando, 2007. "Bayesian predictive information criterion for the evaluation of hierarchical Bayesian and empirical Bayes models," Biometrika, Biometrika Trust, vol. 94(2), pages 443-458.
    5. Gallant, A. Ronald, 1975. "Seemingly unrelated nonlinear regressions," Journal of Econometrics, Elsevier, vol. 3(1), pages 35-50, February.
    6. McCulloch, Robert E. & Polson, Nicholas G. & Rossi, Peter E., 2000. "A Bayesian analysis of the multinomial probit model with fully identified parameters," Journal of Econometrics, Elsevier, vol. 99(1), pages 173-193, November.
    7. Fraser, D.A.S. & Rekkas, M. & Wong, A., 2005. "Highly accurate likelihood analysis for the seemingly unrelated regression problem," Journal of Econometrics, Elsevier, vol. 127(1), pages 17-33, July.
    8. Philip Heidelberger & Peter D. Welch, 1983. "Simulation Run Length Control in the Presence of an Initial Transient," Operations Research, INFORMS, vol. 31(6), pages 1109-1144, December.
    9. Chib, Siddhartha & Greenberg, Edward, 1995. "Hierarchical analysis of SUR models with extensions to correlated serial errors and time-varying parameter models," Journal of Econometrics, Elsevier, vol. 68(2), pages 339-360, August.
    10. Ng, Vee Ming, 2002. "Robust Bayesian Inference for Seemingly Unrelated Regressions with Elliptical Errors," Journal of Multivariate Analysis, Elsevier, vol. 83(2), pages 409-414, November.
    11. Raymond J. Carroll & Douglas Midthune & Laurence S. Freedman & Victor Kipnis, 2006. "Seemingly Unrelated Measurement Error Models, with Application to Nutritional Epidemiology," Biometrics, The International Biometric Society, vol. 62(1), pages 75-84, March.
    12. Zellner, Arnold & Ando, Tomohiro, 2010. "Bayesian and non-Bayesian analysis of the seemingly unrelated regression model with Student-t errors, and its application for forecasting," International Journal of Forecasting, Elsevier, vol. 26(2), pages 413-434, April.
    13. Jacquier, Eric & Polson, Nicholas G. & Rossi, P.E.Peter E., 2004. "Bayesian analysis of stochastic volatility models with fat-tails and correlated errors," Journal of Econometrics, Elsevier, vol. 122(1), pages 185-212, September.
    14. Kurata, Hiroshi, 1999. "On the Efficiencies of Several Generalized Least Squares Estimators in a Seemingly Unrelated Regression Model and a Heteroscedastic Model," Journal of Multivariate Analysis, Elsevier, vol. 70(1), pages 86-94, July.
    15. Zellner, Arnold & Bauwens, Luc & Van Dijk, Herman K., 1988. "Bayesian specification analysis and estimation of simultaneous equation models using Monte Carlo methods," Journal of Econometrics, Elsevier, vol. 38(1-2), pages 39-72.
    16. Zellner, Arnold, 1988. "Bayesian analysis in econometrics," Journal of Econometrics, Elsevier, vol. 37(1), pages 27-50, January.
    17. Mandy, David M. & Martins-Filho, Carlos, 1993. "Seemingly unrelated regressions under additive heteroscedasticity : Theory and share equation applications," Journal of Econometrics, Elsevier, vol. 58(3), pages 315-346, August.
    18. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    19. Liu, Aiyi, 2002. "Efficient Estimation of Two Seemingly Unrelated Regression Equations," Journal of Multivariate Analysis, Elsevier, vol. 82(2), pages 445-456, August.
    20. Zellner, Arnold & Ando, Tomohiro, 2010. "Rejoinder," International Journal of Forecasting, Elsevier, vol. 26(2), pages 439-442, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zellner, Arnold & Ando, Tomohiro, 2010. "Bayesian and non-Bayesian analysis of the seemingly unrelated regression model with Student-t errors, and its application for forecasting," International Journal of Forecasting, Elsevier, vol. 26(2), pages 413-434, April.
    2. Xu, Qinfeng & You, Jinhong & Zhou, Bin, 2008. "Seemingly unrelated nonparametric models with positive correlation and constrained error variances," Economics Letters, Elsevier, vol. 99(2), pages 223-227, May.
    3. Jinhong You & Xian Zhou, 2010. "Statistical inference on seemingly unrelated varying coefficient partially linear models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 64(2), pages 227-253, May.
    4. Yu, Jun, 2005. "On leverage in a stochastic volatility model," Journal of Econometrics, Elsevier, vol. 127(2), pages 165-178, August.
    5. Abanto-Valle, C.A. & Bandyopadhyay, D. & Lachos, V.H. & Enriquez, I., 2010. "Robust Bayesian analysis of heavy-tailed stochastic volatility models using scale mixtures of normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 2883-2898, December.
    6. Carlos A. Abanto‐Valle & Helio S. Migon & Hedibert F. Lopes, 2010. "Bayesian modeling of financial returns: A relationship between volatility and trading volume," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 26(2), pages 172-193, March.
    7. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility," Microeconomics Working Papers 22058, East Asian Bureau of Economic Research.
    8. Wang, Joanna J.J. & Chan, Jennifer S.K. & Choy, S.T. Boris, 2011. "Stochastic volatility models with leverage and heavy-tailed distributions: A Bayesian approach using scale mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 852-862, January.
    9. Li, Mingliang & Mumford, Kevin J. & Tobias, Justin L., 2012. "A Bayesian analysis of payday loans and their regulation," Journal of Econometrics, Elsevier, vol. 171(2), pages 205-216.
    10. Antolín-Díaz, Juan & Drechsel, Thomas & Petrella, Ivan, 2024. "Advances in nowcasting economic activity: The role of heterogeneous dynamics and fat tails," Journal of Econometrics, Elsevier, vol. 238(2).
    11. Wang, Joanna J.J., 2012. "On asymmetric generalised t stochastic volatility models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(11), pages 2079-2095.
    12. Avouyi-Dovi, S. & Horny, G. & Sevestre, P., 2017. "The stability of short-term interest rates pass-through in the euro area during the financial market and sovereign debt crises," Journal of Banking & Finance, Elsevier, vol. 79(C), pages 74-94.
    13. Yu, Jun & Yang, Zhenlin & Zhang, Xibin, 2006. "A class of nonlinear stochastic volatility models and its implications for pricing currency options," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2218-2231, December.
    14. Bresson Georges & Chaturvedi Anoop & Rahman Mohammad Arshad & Shalabh, 2021. "Seemingly unrelated regression with measurement error: estimation via Markov Chain Monte Carlo and mean field variational Bayes approximation," The International Journal of Biostatistics, De Gruyter, vol. 17(1), pages 75-97, May.
    15. Raggi, Davide & Bordignon, Silvano, 2006. "Comparing stochastic volatility models through Monte Carlo simulations," Computational Statistics & Data Analysis, Elsevier, vol. 50(7), pages 1678-1699, April.
    16. Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2014. "On the Rise of Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 14-085/III, Tinbergen Institute, revised 04 Sep 2014.
    17. repec:dau:papers:123456789/15030 is not listed on IDEAS
    18. Radu Tunaru, 2015. "Model Risk in Financial Markets:From Financial Engineering to Risk Management," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 9524, December.
    19. Wang, Min & Sun, Xiaoqian, 2012. "Bayesian inference for the correlation coefficient in two seemingly unrelated regressions," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2442-2453.
    20. Anders Johansson, 2009. "Stochastic volatility and time-varying country risk in emerging markets," The European Journal of Finance, Taylor & Francis Journals, vol. 15(3), pages 337-363.
    21. Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2013. "Historical Developments in Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 13-191/III, Tinbergen Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:159:y:2010:i:1:p:33-45. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.