IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v83y2002i2p409-414.html
   My bibliography  Save this article

Robust Bayesian Inference for Seemingly Unrelated Regressions with Elliptical Errors

Author

Listed:
  • Ng, Vee Ming

Abstract

Bayesian inference is considered for the seemingly unrelated regressions with an elliptically contoured error distribution. We show that the posterior distribution of the regression parameters and the predictive distribution of future observations under elliptical errors assumption are identical to those obtained under independently distributed normal errors when an improper prior is used. This gives inference robustness with respect to departures from the reference case of independent sampling from the normal distribution.

Suggested Citation

  • Ng, Vee Ming, 2002. "Robust Bayesian Inference for Seemingly Unrelated Regressions with Elliptical Errors," Journal of Multivariate Analysis, Elsevier, vol. 83(2), pages 409-414, November.
  • Handle: RePEc:eee:jmvana:v:83:y:2002:i:2:p:409-414
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(01)92054-8
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chib, Siddhartha & Tiwari, Ram C. & Jammalamadaka, S. Rao, 1988. "Bayes prediction in regressions with elliptical errors," Journal of Econometrics, Elsevier, vol. 38(3), pages 349-360, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arellano-Valle, R.B. & del Pino, G. & Iglesias, P., 2006. "Bayesian inference in spherical linear models: robustness and conjugate analysis," Journal of Multivariate Analysis, Elsevier, vol. 97(1), pages 179-197, January.
    2. Kibria, B.M. Golam, 2006. "The matrix-t distribution and its applications in predictive inference," Journal of Multivariate Analysis, Elsevier, vol. 97(3), pages 785-795, March.
    3. Zellner, Arnold & Ando, Tomohiro, 2010. "Bayesian and non-Bayesian analysis of the seemingly unrelated regression model with Student-t errors, and its application for forecasting," International Journal of Forecasting, Elsevier, vol. 26(2), pages 413-434, April.
    4. Zellner, Arnold & Ando, Tomohiro, 2010. "A direct Monte Carlo approach for Bayesian analysis of the seemingly unrelated regression model," Journal of Econometrics, Elsevier, vol. 159(1), pages 33-45, November.
    5. Cai, Bo & Dunson, David B., 2007. "Bayesian Multivariate Isotonic Regression Splines: Applications to Carcinogenicity Studies," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1158-1171, December.
    6. Liu, Jin Shan & Ip, Wai Cheung & Wong, Heung, 2009. "Predictive inference for singular multivariate elliptically contoured distributions," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1440-1446, August.
    7. Xu, Qinfeng & You, Jinhong & Zhou, Bin, 2008. "Seemingly unrelated nonparametric models with positive correlation and constrained error variances," Economics Letters, Elsevier, vol. 99(2), pages 223-227, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:83:y:2002:i:2:p:409-414. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.