IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2601.04663.html

Quantile Vector Autoregression without Crossing

Author

Listed:
  • Tomohiro Ando
  • Tadao Hoshino
  • Ruey Tsay

Abstract

This paper considers estimation and model selection of quantile vector autoregression (QVAR). Conventional quantile regression often yields undesirable crossing quantile curves, violating the monotonicity of quantiles. To address this issue, we propose a simplex quantile vector autoregression (SQVAR) framework, which transforms the autoregressive (AR) structure of the original QVAR model into a simplex, ensuring that the estimated quantile curves remain monotonic across all quantile levels. In addition, we impose the smoothly clipped absolute deviation (SCAD) penalty on the SQVAR model to mitigate the explosive nature of the parameter space. We further develop a Bayesian information criterion (BIC)-based procedure for selecting the optimal penalty parameter and introduce new frameworks for impulse response analysis of QVAR models. Finally, we establish asymptotic properties of the proposed method, including the convergence rate and asymptotic normality of the estimator, the consistency of AR order selection, and the validity of the BIC-based penalty selection. For illustration, we apply the proposed method to U.S. financial market data, highlighting the usefulness of our SQVAR method.

Suggested Citation

  • Tomohiro Ando & Tadao Hoshino & Ruey Tsay, 2026. "Quantile Vector Autoregression without Crossing," Papers 2601.04663, arXiv.org.
  • Handle: RePEc:arx:papers:2601.04663
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2601.04663
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2601.04663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.