IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Large covariance estimation by thresholding principal orthogonal complements

  • Fan, Jianqing
  • Liao, Yuan
  • Mincheva, Martina

This paper deals with estimation of high-dimensional covariance with a conditional sparsity structure, which is the composition of a low-rank matrix plus a sparse matrix. By assuming sparse error covariance matrix in a multi-factor model, we allow the presence of the cross-sectional correlation even after taking out common but unobservable factors. We introduce the Principal Orthogonal complEment Thresholding (POET) method to explore such an approximate factor structure. The POET estimator includes the sample covariance matrix, the factor-based covariance matrix (Fan, Fan and Lv, 2008), the thresholding estimator (Bickel and Levina, 2008) and the adaptive thresholding estimator (Cai and Liu, 2011) as specic examples. We provide mathematical insights when the factor analysis is approximately the same as the principal component analysis for high dimensional data. The rates of convergence of the sparse residual covariance matrix and the conditional sparse covariance matrix are studied under various norms, including the spectral norm. It is shown that the impact of estimating the unknown factors vanishes as the dimensionality increases. The uniform rates of convergence for the unobserved factors and their factor loadings are derived. The asymptotic results are also veried by extensive simulation studies.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://mpra.ub.uni-muenchen.de/38697/1/MPRA_paper_38697.pdf
File Function: original version
Download Restriction: no

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 38697.

as
in new window

Length:
Date of creation: 2011
Date of revision:
Handle: RePEc:pra:mprapa:38697
Contact details of provider: Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: http://mpra.ub.uni-muenchen.de

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. M. Hashem Pesaran, 2004. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," CESifo Working Paper Series 1331, CESifo Group Munich.
  2. Rothman, Adam J. & Levina, Elizaveta & Zhu, Ji, 2009. "Generalized Thresholding of Large Covariance Matrices," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 177-186.
  3. Ahn, Seung Chan & Hoon Lee, Young & Schmidt, Peter, 2001. "GMM estimation of linear panel data models with time-varying individual effects," Journal of Econometrics, Elsevier, vol. 101(2), pages 219-255, April.
  4. Ross, Stephen A., 1976. "The arbitrage theory of capital asset pricing," Journal of Economic Theory, Elsevier, vol. 13(3), pages 341-360, December.
  5. Cai, Tony & Liu, Weidong, 2011. "Adaptive Thresholding for Sparse Covariance Matrix Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 672-684.
  6. Efron, Bradley, 2010. "Correlated z-Values and the Accuracy of Large-Scale Statistical Estimates," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1042-1055.
  7. Xi Luo, 2011. "Recovering Model Structures from Large Low Rank and Sparse Covariance Matrix Estimation," Papers 1111.1133, arXiv.org, revised Mar 2013.
  8. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 1999. "The Generalized Dynamic Factor Model: Identification and Estimation," CEPR Discussion Papers 2338, C.E.P.R. Discussion Papers.
  9. Shen, Haipeng & Huang, Jianhua Z., 2008. "Sparse principal component analysis via regularized low rank matrix approximation," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1015-1034, July.
  10. Kapetanios, George, 2010. "A Testing Procedure for Determining the Number of Factors in Approximate Factor Models With Large Datasets," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(3), pages 397-409.
  11. Chamberlain, Gary & Rothschild, Michael, 1983. "Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets," Econometrica, Econometric Society, vol. 51(5), pages 1281-304, September.
  12. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
  13. Catherine Doz & Lucrezia Reichlin, 2011. "A two-step estimator for large approximate dynamic factor models based on Kalman filtering," Post-Print hal-00844811, HAL.
  14. Alexei Onatski, 2010. "Determining the Number of Factors from Empirical Distribution of Eigenvalues," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1004-1016, November.
  15. Jianqing Fan & Jingjin Zhang & Ke Yu, 2008. "Asset Allocation and Risk Assessment with Gross Exposure Constraints for Vast Portfolios," Papers 0812.2604, arXiv.org.
  16. Fama, Eugene F & French, Kenneth R, 1992. " The Cross-Section of Expected Stock Returns," Journal of Finance, American Finance Association, vol. 47(2), pages 427-65, June.
  17. Hallin, Marc & Liska, Roman, 2007. "Determining the Number of Factors in the General Dynamic Factor Model," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 603-617, June.
  18. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
  19. Johnstone, Iain M. & Lu, Arthur Yu, 2009. "On Consistency and Sparsity for Principal Components Analysis in High Dimensions," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 682-693.
  20. Efron, Bradley, 2007. "Correlation and Large-Scale Simultaneous Significance Testing," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 93-103, March.
  21. Fan, Jianqing & Fan, Yingying & Lv, Jinchi, 2008. "High dimensional covariance matrix estimation using a factor model," Journal of Econometrics, Elsevier, vol. 147(1), pages 186-197, November.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:38697. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.