IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Asset Allocation and Risk Assessment with Gross Exposure Constraints for Vast Portfolios

  • Jianqing Fan
  • Jingjin Zhang
  • Ke Yu

Markowitz (1952, 1959) laid down the ground-breaking work on the mean-variance analysis. Under his framework, the theoretical optimal allocation vector can be very different from the estimated one for large portfolios due to the intrinsic difficulty of estimating a vast covariance matrix and return vector. This can result in adverse performance in portfolio selected based on empirical data due to the accumulation of estimation errors. We address this problem by introducing the gross-exposure constrained mean-variance portfolio selection. We show that with gross-exposure constraint the theoretical optimal portfolios have similar performance to the empirically selected ones based on estimated covariance matrices and there is no error accumulation effect from estimation of vast covariance matrices. This gives theoretical justification to the empirical results in Jagannathan and Ma (2003). We also show that the no-short-sale portfolio is not diversified enough and can be improved by allowing some short positions. As the constraint on short sales relaxes, the number of selected assets varies from a small number to the total number of stocks, when tracking portfolios or selecting assets. This achieves the optimal sparse portfolio selection, which has close performance to the theoretical optimal one. Among 1000 stocks, for example, we are able to identify all optimal subsets of portfolios of different sizes, their associated allocation vectors, and their estimated risks. The utility of our new approach is illustrated by simulation and empirical studies on the 100 Fama-French industrial portfolios and the 400 stocks randomly selected from Russell 3000.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://arxiv.org/pdf/0812.2604
File Function: Latest version
Download Restriction: no

Paper provided by arXiv.org in its series Papers with number 0812.2604.

as
in new window

Length:
Date of creation: Dec 2008
Date of revision:
Handle: RePEc:arx:papers:0812.2604
Contact details of provider: Web page: http://arxiv.org/

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," NBER Working Papers 8160, National Bureau of Economic Research, Inc.
  2. Fan, Jianqing & Fan, Yingying & Lv, Jinchi, 2008. "High dimensional covariance matrix estimation using a factor model," Journal of Econometrics, Elsevier, vol. 147(1), pages 186-197, November.
  3. M. Hashem Pesaran & Paolo Zaffaroni, 2008. "Optimal Asset Allocation with Factor Models for Large Portfolios," CESifo Working Paper Series 2326, CESifo Group Munich.
  4. Patton, Andrew J., 2011. "Data-based ranking of realised volatility estimators," Journal of Econometrics, Elsevier, vol. 161(2), pages 284-303, April.
  5. de Roon, F.A. & Nijman, T.E. & Werker, B.J.M., 1998. "Testing for mean-variance spanning with short sales constraints and transaction costs : The case of emerging markets," Discussion Paper 1998-07, Tilburg University, Center for Economic Research.
  6. Nijman, T.E. & de Roon, F.A. & Werker, B.J.M., 2001. "Testing for Mean-Variance spanning with short sales constraints and transaction costs : The case of emerging markets," Other publications TiSEM f4a3551a-d7ae-4c22-8813-b, Tilburg University, School of Economics and Management.
  7. Ledoit, Olivier & Wolf, Michael, 2003. "Improved estimation of the covariance matrix of stock returns with an application to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 603-621, December.
  8. Lan Zhang & Per A. Mykland & Yacine Ait-Sahalia, 2003. "A Tale of Two Time Scales: Determining Integrated Volatility with Noisy High Frequency Data," NBER Working Papers 10111, National Bureau of Economic Research, Inc.
  9. repec:ner:tilbur:urn:nbn:nl:ui:12-86724 is not listed on IDEAS
  10. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228.
  11. Klein, Roger W. & Bawa, Vijay S., 1976. "The effect of estimation risk on optimal portfolio choice," Journal of Financial Economics, Elsevier, vol. 3(3), pages 215-231, June.
  12. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
  13. Laurent Laloux & Pierre Cizeau & Jean-Philippe Bouchaud & Marc Potters, 1998. "Noise dressing of financial correlation matrices," Science & Finance (CFM) working paper archive 500051, Science & Finance, Capital Fund Management.
  14. Yacine Aït-Sahalia, 2005. "How Often to Sample a Continuous-Time Process in the Presence of Market Microstructure Noise," Review of Financial Studies, Society for Financial Studies, vol. 18(2), pages 351-416.
  15. Neil Shephard & Kevin Sheppard & Robert F. Engle, 2008. "Fitting vast dimensional time-varying covariance models," Economics Series Working Papers 403, University of Oxford, Department of Economics.
  16. Ravi Jagannathan & Tongshu Ma, 2002. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," NBER Working Papers 8922, National Bureau of Economic Research, Inc.
  17. Ole E. Barndorff-Nielsen & Neil Shephard, 2000. "Econometric analysis of realised volatility and its use in estimating stochastic volatility models," Economics Papers 2001-W4, Economics Group, Nuffield College, University of Oxford, revised 05 Jul 2001.
  18. Black, Fischer, 1972. "Capital Market Equilibrium with Restricted Borrowing," The Journal of Business, University of Chicago Press, vol. 45(3), pages 444-55, July.
  19. Ledoit, Olivier & Wolf, Michael, 2004. "A well-conditioned estimator for large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:arx:papers:0812.2604. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.