IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1501.02382.html
   My bibliography  Save this paper

Robust Inference of Risks of Large Portfolios

Author

Listed:
  • Jianqing Fan
  • Fang Han
  • Han Liu
  • Byron Vickers

Abstract

We propose a bootstrap-based robust high-confidence level upper bound (Robust H-CLUB) for assessing the risks of large portfolios. The proposed approach exploits rank-based and quantile-based estimators, and can be viewed as a robust extension of the H-CLUB method (Fan et al., 2015). Such an extension allows us to handle possibly misspecified models and heavy-tailed data. Under mixing conditions, we analyze the proposed approach and demonstrate its advantage over the H-CLUB. We further provide thorough numerical results to back up the developed theory. We also apply the proposed method to analyze a stock market dataset.

Suggested Citation

  • Jianqing Fan & Fang Han & Han Liu & Byron Vickers, 2015. "Robust Inference of Risks of Large Portfolios," Papers 1501.02382, arXiv.org.
  • Handle: RePEc:arx:papers:1501.02382
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1501.02382
    File Function: Latest version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Pan, Jiazhu & Yao, Qiwei, 2008. "Modelling multiple time series via common factors," LSE Research Online Documents on Economics 22876, London School of Economics and Political Science, LSE Library.
    2. Longla, Martial & Peligrad, Magda, 2012. "Some aspects of modeling dependence in copula-based Markov chains," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 234-240.
    3. Mahmoud Hamada & Emiliano A. Valdez, 2008. "CAPM and Option Pricing With Elliptically Contoured Distributions," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 75(2), pages 387-409.
    4. Tze Leung Lai & Haipeng Xing & Zehao Chen, 2011. "Mean--variance portfolio optimization when means and covariances are unknown," Papers 1108.0996, arXiv.org.
    5. P. Fryzlewicz, 2013. "High-dimensional volatility matrix estimation via wavelets and thresholding," Biometrika, Biometrika Trust, vol. 100(4), pages 921-938.
    6. Jiazhu Pan & Qiwei Yao, 2008. "Modelling multiple time series via common factors," Biometrika, Biometrika Trust, vol. 95(2), pages 365-379.
    7. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    8. Chamberlain, Gary, 1983. "A characterization of the distributions that imply mean--Variance utility functions," Journal of Economic Theory, Elsevier, vol. 29(1), pages 185-201, February.
    9. Fan, Jianqing & Liao, Yuan & Shi, Xiaofeng, 2015. "Risks of large portfolios," Journal of Econometrics, Elsevier, vol. 186(2), pages 367-387.
    10. Ledoit, Olivier & Wolf, Michael, 2003. "Improved estimation of the covariance matrix of stock returns with an application to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 603-621, December.
    11. Ravi Jagannathan & Tongshu Ma, 2003. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," Journal of Finance, American Finance Association, vol. 58(4), pages 1651-1684, August.
    12. Ole E. Barndorff-Nielsen & Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280.
    13. Owen, Joel & Rabinovitch, Ramon, 1983. " On the Class of Elliptical Distributions and Their Applications to the Theory of Portfolio Choice," Journal of Finance, American Finance Association, vol. 38(3), pages 745-752, June.
    14. Fan, Jianqing & Han, Fang & Liu, Han & Vickers, Byron, 2016. "Robust inference of risks of large portfolios," Journal of Econometrics, Elsevier, vol. 194(2), pages 298-308.
    15. Pesaran, M.H. & Zaffaroni, P., 2008. "Optimal Asset Allocation with Factor Models for Large Portfolios," Cambridge Working Papers in Economics 0813, Faculty of Economics, University of Cambridge.
    16. Fang Han & Han Liu, 2014. "Scale-Invariant Sparse PCA on High-Dimensional Meta-Elliptical Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 275-287, March.
    17. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    18. Frahm, Gabriel & Jaekel, Uwe, 2007. "Tyler's M-estimator, random matrix theory, and generalized elliptical distributions with applications to finance," Discussion Papers in Econometrics and Statistics 2/07, University of Cologne, Institute of Econometrics and Statistics.
    19. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    20. Jianqing Fan & Jingjin Zhang & Ke Yu, 2012. "Vast Portfolio Selection With Gross-Exposure Constraints," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 592-606, June.
    21. Fan, Jianqing & Fan, Yingying & Lv, Jinchi, 2008. "High dimensional covariance matrix estimation using a factor model," Journal of Econometrics, Elsevier, vol. 147(1), pages 186-197, November.
    22. Jianqing Fan & Jinchi Lv & Lei Qi, 2011. "Sparse High-Dimensional Models in Economics," Annual Review of Economics, Annual Reviews, vol. 3(1), pages 291-317, September.
    23. Shao, Qi-Man & Yu, Hao, 1993. "Bootstrapping the sample means for stationary mixing sequences," Stochastic Processes and their Applications, Elsevier, vol. 48(1), pages 175-190, October.
    24. Bai, Jushan & Liao, Yuan, 2012. "Efficient Estimation of Approximate Factor Models," MPRA Paper 41558, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:econom:v:201:y:2017:i:2:p:307-321 is not listed on IDEAS
    2. repec:eee:jmacro:v:54:y:2017:i:pa:p:59-71 is not listed on IDEAS
    3. Fan, Jianqing & Han, Fang & Liu, Han & Vickers, Byron, 2016. "Robust inference of risks of large portfolios," Journal of Econometrics, Elsevier, vol. 194(2), pages 298-308.
    4. Matteo Barigozzi & Marc Hallin & Stefano Soccorsi, 2017. "Identification of Global and National Shocks in International Financial Markets via General Dynamic Factor Models," Working Papers ECARES ECARES 2017-10, ULB -- Universite Libre de Bruxelles.
    5. Hafner, C. M. & Linton, O., 2016. "Estimation of a Multiplicative Covariance Structure in the Large Dimensional Case," Cambridge Working Papers in Economics 1664, Faculty of Economics, University of Cambridge.
    6. Barigozzi, Matteo & Hallin, Marc, 2017. "Generalized dynamic factor models and volatilities: estimation and forecasting," Journal of Econometrics, Elsevier, vol. 201(2), pages 307-321.

    More about this item

    JEL classification:

    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1501.02382. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.