IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v84y1999i2p313-342.html
   My bibliography  Save this article

A new weak dependence condition and applications to moment inequalities

Author

Listed:
  • Doukhan, Paul
  • Louhichi, Sana

Abstract

The purpose of this paper is to propose a unifying weak dependence condition. Mixing sequences, functions of associated or Gaussian sequences, Bernoulli shifts as well as models with a Markovian representation are examples of the models considered. We establish Marcinkiewicz-Zygmund, Rosenthal and exponential inequalities for general sequences of centered random variables. Inequalities are stated in terms of the decay rate for the covariance of products of the initial random variables subject to the condition that the gap of time between both products tends to infinity. As applications of those notions, we obtain a version of the functional CLT and an invariance principle for the empirical process

Suggested Citation

  • Doukhan, Paul & Louhichi, Sana, 1999. "A new weak dependence condition and applications to moment inequalities," Stochastic Processes and their Applications, Elsevier, vol. 84(2), pages 313-342, December.
  • Handle: RePEc:eee:spapps:v:84:y:1999:i:2:p:313-342
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(99)00055-1
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jakubowski, Adam, 1993. "Minimal conditions in p-stable limit theorems," Stochastic Processes and their Applications, Elsevier, vol. 44(2), pages 291-327, February.
    2. Lanh Tran, 1990. "Recursive kernel density estimators under a weak dependence condition," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 42(2), pages 305-329, June.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:84:y:1999:i:2:p:313-342. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.