IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1108.0996.html
   My bibliography  Save this paper

Mean--variance portfolio optimization when means and covariances are unknown

Author

Listed:
  • Tze Leung Lai
  • Haipeng Xing
  • Zehao Chen

Abstract

Markowitz's celebrated mean--variance portfolio optimization theory assumes that the means and covariances of the underlying asset returns are known. In practice, they are unknown and have to be estimated from historical data. Plugging the estimates into the efficient frontier that assumes known parameters has led to portfolios that may perform poorly and have counter-intuitive asset allocation weights; this has been referred to as the "Markowitz optimization enigma." After reviewing different approaches in the literature to address these difficulties, we explain the root cause of the enigma and propose a new approach to resolve it. Not only is the new approach shown to provide substantial improvements over previous methods, but it also allows flexible modeling to incorporate dynamic features and fundamental analysis of the training sample of historical data, as illustrated in simulation and empirical studies.

Suggested Citation

  • Tze Leung Lai & Haipeng Xing & Zehao Chen, 2011. "Mean--variance portfolio optimization when means and covariances are unknown," Papers 1108.0996, arXiv.org.
  • Handle: RePEc:arx:papers:1108.0996
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1108.0996
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stephen A. Ross, 2013. "The Arbitrage Theory of Capital Asset Pricing," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 1, pages 11-30, World Scientific Publishing Co. Pte. Ltd..
    2. Best, Michael J & Grauer, Robert R, 1991. "On the Sensitivity of Mean-Variance-Efficient Portfolios to Changes in Asset Means: Some Analytical and Computational Results," The Review of Financial Studies, Society for Financial Studies, vol. 4(2), pages 315-342.
    3. Ledoit, Olivier & Wolf, Michael, 2003. "Improved estimation of the covariance matrix of stock returns with an application to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 603-621, December.
    4. Isabelle Huault & V. Perret & S. Charreire-Petit, 2007. "Management," Post-Print halshs-00337676, HAL.
    5. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    6. Canner, Niko & Mankiw, N Gregory & Weil, David N, 1997. "An Asset Allocation Puzzle," American Economic Review, American Economic Association, vol. 87(1), pages 181-191, March.
    7. Vijay K. Chopra & Chris R. Hensel & Andrew L. Turner, 1993. "Massaging Mean-Variance Inputs: Returns from Alternative Global Investment Strategies in the 1980s," Management Science, INFORMS, vol. 39(7), pages 845-855, July.
    8. Mark Britten‐Jones, 1999. "The Sampling Error in Estimates of Mean‐Variance Efficient Portfolio Weights," Journal of Finance, American Finance Association, vol. 54(2), pages 655-671, April.
    9. Yusif Simaan, 1997. "Estimation Risk in Portfolio Selection: The Mean Variance Model Versus the Mean Absolute Deviation Model," Management Science, INFORMS, vol. 43(10), pages 1437-1446, October.
    10. Fan, Jianqing & Fan, Yingying & Lv, Jinchi, 2008. "High dimensional covariance matrix estimation using a factor model," Journal of Econometrics, Elsevier, vol. 147(1), pages 186-197, November.
    11. Jianhua Z. Huang & Naiping Liu & Mohsen Pourahmadi & Linxu Liu, 2006. "Covariance matrix selection and estimation via penalised normal likelihood," Biometrika, Biometrika Trust, vol. 93(1), pages 85-98, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Davide Benedetti & Enrico Biffis & Fotis Chatzimichalakis & Luciano Lilloy Fedele & Ian Simm, 2021. "Climate change investment risk: optimal portfolio construction ahead of the transition to a lower-carbon economy," Annals of Operations Research, Springer, vol. 299(1), pages 847-871, April.
    2. Ka Wai Tsang & Zhaoyi He, 2020. "Mean-Variance Portfolio Management with Functional Optimization," Papers 2005.12774, arXiv.org, revised Nov 2020.
    3. Jacobs, Michael & Karagozoglu, Ahmet K., 2014. "On the characteristics of dynamic correlations between asset pairs," Research in International Business and Finance, Elsevier, vol. 32(C), pages 60-82.
    4. Fan, Jianqing & Han, Fang & Liu, Han & Vickers, Byron, 2016. "Robust inference of risks of large portfolios," Journal of Econometrics, Elsevier, vol. 194(2), pages 298-308.
    5. Lian, Yu-Min & Chen, Jun-Home, 2019. "Portfolio selection in a multi-asset, incomplete-market economy," The Quarterly Review of Economics and Finance, Elsevier, vol. 71(C), pages 228-238.
    6. Wang, Christina Dan & Chen, Zhao & Lian, Yimin & Chen, Min, 2022. "Asset selection based on high frequency Sharpe ratio," Journal of Econometrics, Elsevier, vol. 227(1), pages 168-188.
    7. Fan, Jianqing & Liao, Yuan & Shi, Xiaofeng, 2015. "Risks of large portfolios," Journal of Econometrics, Elsevier, vol. 186(2), pages 367-387.
    8. Aït-Sahalia, Yacine & Xiu, Dacheng, 2017. "Using principal component analysis to estimate a high dimensional factor model with high-frequency data," Journal of Econometrics, Elsevier, vol. 201(2), pages 384-399.
    9. Tahereh Khodamoradi & Maziar Salahi & Ali Reza Najafi, 2021. "Cardinality-constrained portfolio optimization with short selling and risk-neutral interest rate," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(1), pages 197-214, June.
    10. Caner, Mehmet & Medeiros, Marcelo & Vasconcelos, Gabriel F.R., 2023. "Sharpe Ratio analysis in high dimensions: Residual-based nodewise regression in factor models," Journal of Econometrics, Elsevier, vol. 235(2), pages 393-417.
    11. Chavez-Bedoya, Luis & Rosales, Francisco, 2022. "Orthogonal portfolios to assess estimation risk," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 906-937.
    12. Sujan Adhikari & Pawan Kumar Jha, Ph.D., 2016. "Applicability of Portfolio Theory in Nepali Stock Market," NRB Economic Review, Nepal Rastra Bank, Economic Research Department, vol. 28(1), pages 65-92, April.
    13. Ran Ji & Miguel A. Lejeune, 2018. "Risk-budgeting multi-portfolio optimization with portfolio and marginal risk constraints," Annals of Operations Research, Springer, vol. 262(2), pages 547-578, March.
    14. Luong, Phat V. & Xu, Xiaowei, 2020. "Pass-through of commodity price shocks in distribution channels with risk-averse agents," International Journal of Production Economics, Elsevier, vol. 226(C).
    15. Maller, Ross & Roberts, Steven & Tourky, Rabee, 2016. "The large-sample distribution of the maximum Sharpe ratio with and without short sales," Journal of Econometrics, Elsevier, vol. 194(1), pages 138-152.
    16. Yen, Yu-Min & Yen, Tso-Jung, 2014. "Solving norm constrained portfolio optimization via coordinate-wise descent algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 737-759.
    17. Chirag Shekhar & Mark Trede, 2017. "Portfolio Optimization Using Multivariate t-Copulas with Conditionally Skewed Margins," Review of Economics & Finance, Better Advances Press, Canada, vol. 9, pages 29-41, August.
    18. Chao Zhang & Zihao Zhang & Mihai Cucuringu & Stefan Zohren, 2021. "A Universal End-to-End Approach to Portfolio Optimization via Deep Learning," Papers 2111.09170, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Penaranda, Francisco, 2007. "Portfolio choice beyond the traditional approach," LSE Research Online Documents on Economics 24481, London School of Economics and Political Science, LSE Library.
    2. Xi Luo, 2011. "Recovering Model Structures from Large Low Rank and Sparse Covariance Matrix Estimation," Papers 1111.1133, arXiv.org, revised Mar 2013.
    3. Thomas Conlon & John Cotter & Iason Kynigakis, 2021. "Machine Learning and Factor-Based Portfolio Optimization," Papers 2107.13866, arXiv.org.
    4. Bai, Zhidong & Liu, Huixia & Wong, Wing-Keung, 2016. "Making Markowitz's Portfolio Optimization Theory Practically Useful," MPRA Paper 74360, University Library of Munich, Germany.
    5. Mishra, Anil V., 2016. "Foreign bias in Australian-domiciled mutual fund holdings," Pacific-Basin Finance Journal, Elsevier, vol. 39(C), pages 101-123.
    6. Francesco Lautizi, 2015. "Large Scale Covariance Estimates for Portfolio Selection," CEIS Research Paper 353, Tor Vergata University, CEIS, revised 07 Aug 2015.
    7. Chang, C-L. & McAleer, M.J. & Wong, W.-K., 2015. "Informatics, Data Mining, Econometrics and Financial Economics: A Connection," Econometric Institute Research Papers EI2015-34, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    8. Thomas J. Brennan & Andrew W. Lo, 2010. "Impossible Frontiers," Management Science, INFORMS, vol. 56(6), pages 905-923, June.
    9. Eom, Cheoljun, 2017. "Two-faced property of a market factor in asset pricing and diversification effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 190-199.
    10. Mårten Gulliksson & Stepan Mazur, 2020. "An Iterative Approach to Ill-Conditioned Optimal Portfolio Selection," Computational Economics, Springer;Society for Computational Economics, vol. 56(4), pages 773-794, December.
    11. Natalia Bailey & George Kapetanios & M. Hashem Pesaran, 2019. "Exponent of Cross-sectional Dependence for Residuals," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 46-102, September.
    12. James DiLellio, 2015. "A Kalman filter control technique in mean-variance portfolio management," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 39(2), pages 235-261, April.
    13. Alles Rodrigues, Alexandre & Casalin, Fabrizio, 2022. "Factor investing in Brazil: Diversifying across factor tilts and allocation strategies," Emerging Markets Review, Elsevier, vol. 52(C).
    14. Bodnar, Taras & Reiß, Markus, 2016. "Exact and asymptotic tests on a factor model in low and large dimensions with applications," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 125-151.
    15. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    16. Jushan Bai & Shuzhong Shi, 2011. "Estimating High Dimensional Covariance Matrices and its Applications," Annals of Economics and Finance, Society for AEF, vol. 12(2), pages 199-215, November.
    17. Huang, Hung-Hsi & Lin, Shin-Hung & Wang, Ching-Ping & Chiu, Chia-Yung, 2014. "Adjusting MV-efficient portfolio frontier bias for skewed and non-mesokurtic returns," The North American Journal of Economics and Finance, Elsevier, vol. 29(C), pages 59-83.
    18. Gilles Boevi Koumou, 2020. "Diversification and portfolio theory: a review," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 34(3), pages 267-312, September.
    19. Schanbacher Peter, 2015. "Averaging Across Asset Allocation Models," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 235(1), pages 61-81, February.
    20. Bai, Zhidong & Li, Hua & Wong, Wing-Keung, 2013. "The best estimation for high-dimensional Markowitz mean-variance optimization," MPRA Paper 43862, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1108.0996. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.