IDEAS home Printed from https://ideas.repec.org/p/ces/ceswps/_6432.html
   My bibliography  Save this paper

Testing for Alpha in Linear Factor Pricing Models with a Large Number of Securities

Author

Listed:
  • M. Hashem Pesaran
  • Takashi Yamagata

Abstract

This paper proposes a novel test of zero pricing errors for the linear factor pricing model when the number of securities, N, can be large relative to the time dimension, T, of the return series. The test is based on Student t tests of individual securities and has a number of advantages over the existing standardised Wald type tests. It allows for non-Gaussianity and general forms of weakly cross correlated errors. It does not require estimation of an invertible error covariance matrix, it is much faster to implement, and is valid even if N is much larger than T. Monte Carlo evidence shows that the proposed test performs remarkably well even when T = 60 and N = 5;000. The test is applied to monthly returns on securities in the S&P 500 at the end of each month in real time, using rolling windows of size 60. Statistically significant evidence against Sharpe-Lintner CAPM and Fama-French three factor models are found mainly during the recent financial crisis. Also we find a significant negative correlation between a twelve-months moving average p-values of the test and excess returns of long/short equity strategies (relative to the return on S&P 500) over the period November 1994 to June 2015, suggesting that abnormal profits are earned during episodes of market inefficiencies.

Suggested Citation

  • M. Hashem Pesaran & Takashi Yamagata, 2017. "Testing for Alpha in Linear Factor Pricing Models with a Large Number of Securities," CESifo Working Paper Series 6432, CESifo.
  • Handle: RePEc:ces:ceswps:_6432
    as

    Download full text from publisher

    File URL: https://www.cesifo.org/DocDL/cesifo1_wp6432.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. C. Vale & Vincent Maurelli, 1983. "Simulating multivariate nonnormal distributions," Psychometrika, Springer;The Psychometric Society, vol. 48(3), pages 465-471, September.
    2. Michael R. Harwell & Ronald C. Serlin, 1989. "A Nonparametric Test Statistic for the General Linear Model," Journal of Educational and Behavioral Statistics, , vol. 14(4), pages 351-371, December.
    3. Todd Headrick & Shlomo Sawilowsky, 1999. "Simulating correlated multivariate nonnormal distributions: Extending the fleishman power method," Psychometrika, Springer;The Psychometric Society, vol. 64(2), pages 251-251, June.
    4. Todd Headrick & Shlomo Sawilowsky, 1999. "Simulating correlated multivariate nonnormal distributions: Extending the fleishman power method," Psychometrika, Springer;The Psychometric Society, vol. 64(1), pages 25-35, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Victor Chernozhukov & Wolfgang K. Hardle & Chen Huang & Weining Wang, 2018. "LASSO-Driven Inference in Time and Space," Papers 1806.05081, arXiv.org, revised May 2020.
    2. Natalia Bailey & George Kapetanios & M. Hashem Pesaran, 2020. "Measurement of Factor Strength: Theory and Practice," Monash Econometrics and Business Statistics Working Papers 7/20, Monash University, Department of Econometrics and Business Statistics.
    3. Chaohua Dong & Jiti Gao & Oliver Linton, 2017. "High dimensional semiparametric moment restriction models," Monash Econometrics and Business Statistics Working Papers 17/17, Monash University, Department of Econometrics and Business Statistics.
    4. Linton, Oliver & Xiao, Zhijie, 2019. "Efficient estimation of nonparametric regression in the presence of dynamic heteroskedasticity," Journal of Econometrics, Elsevier, vol. 213(2), pages 608-631.
    5. M. Hashem Pesaran & Ron P. Smith, 2019. "The Role of Factor Strength and Pricing Errors for Estimation and Inference in Asset Pricing Models," CESifo Working Paper Series 7919, CESifo.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gary van Vuuren & Riaan de Jongh, 2017. "A comparison of risk aggregation estimates using copulas and Fleishman distributions," Applied Economics, Taylor & Francis Journals, vol. 49(17), pages 1715-1731, April.
    2. Pesaran, M. Hashem & Yamagata, Takashi, 2012. "Testing CAPM with a Large Number of Assets," IZA Discussion Papers 6469, Institute of Labor Economics (IZA).
    3. Max Auerswald & Morten Moshagen, 2015. "Generating Correlated, Non-normally Distributed Data Using a Non-linear Structural Model," Psychometrika, Springer;The Psychometric Society, vol. 80(4), pages 920-937, December.
    4. Mohan D. Pant & Todd C. Headrick, 2017. "Simulating Uniform- and Triangular- Based Double Power Method Distributions," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 6(1), pages 1-1.
    5. Al-Subaihi, Ali A., 2004. "Simulating Correlated Multivariate Pseudorandom Numbers," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 9(i04).
    6. Headrick, Todd C., 2002. "Fast fifth-order polynomial transforms for generating univariate and multivariate nonnormal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 40(4), pages 685-711, October.
    7. Headrick, Todd C. & Mugdadi, Abdel, 2006. "On simulating multivariate non-normal distributions from the generalized lambda distribution," Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 3343-3353, July.
    8. Ke-Hai Yuan & Peter Bentler, 2002. "On robusiness of the normal-theory based asymptotic distributions of three reliability coefficient estimates," Psychometrika, Springer;The Psychometric Society, vol. 67(2), pages 251-259, June.
    9. Pesaran, M. H. & Yamagata, T., 2012. "Testing CAPM with a Large Number of Assets (Updated 28th March 2012)," Cambridge Working Papers in Economics 1210, Faculty of Economics, University of Cambridge.
    10. Yen Lee & David Kaplan, 2018. "Generating Multivariate Ordinal Data via Entropy Principles," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 156-181, March.
    11. Beasley, T. Mark & Zumbo, Bruno D., 2003. "Comparison of aligned Friedman rank and parametric methods for testing interactions in split-plot designs," Computational Statistics & Data Analysis, Elsevier, vol. 42(4), pages 569-593, April.
    12. Headrick, Todd C. & Sheng, Yanyan & Hodis, Flaviu-Adrian, 2007. "Numerical Computing and Graphics for the Power Method Transformation Using Mathematica," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 19(i03).
    13. Mahul, Olivier, 2002. "Hedging Price Risk in the Presence of Crop Yield and Revenue Insurance," 2002 International Congress, August 28-31, 2002, Zaragoza, Spain 24881, European Association of Agricultural Economists.
    14. Shaobo Jin & Fan Yang-Wallentin, 2017. "Asymptotic Robustness Study of the Polychoric Correlation Estimation," Psychometrika, Springer;The Psychometric Society, vol. 82(1), pages 67-85, March.
    15. Emanuela Raffinetti & Pier Alda Ferrari, 2021. "A dependence measure flow tree through Monte Carlo simulations," Quality & Quantity: International Journal of Methodology, Springer, vol. 55(2), pages 467-496, April.
    16. Rainer Schlittgen & Marko Sarstedt & Christian M. Ringle, 2020. "Data generation for composite-based structural equation modeling methods," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(4), pages 747-757, December.
    17. Steffen Grønneberg & Njål Foldnes, 2017. "Covariance Model Simulation Using Regular Vines," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 1035-1051, December.
    18. Alessandro Barbiero & Asmerilda Hitaj, 2020. "Goodman and Kruskal’s Gamma Coefficient for Ordinalized Bivariate Normal Distributions," Psychometrika, Springer;The Psychometric Society, vol. 85(4), pages 905-925, December.
    19. Doumpos, Michael & Zopounidis, Constantin, 2004. "Developing sorting models using preference disaggregation analysis: An experimental investigation," European Journal of Operational Research, Elsevier, vol. 154(3), pages 585-598, May.
    20. Njål Foldnes & Steffen Grønneberg, 2019. "On Identification and Non-normal Simulation in Ordinal Covariance and Item Response Models," Psychometrika, Springer;The Psychometric Society, vol. 84(4), pages 1000-1017, December.

    More about this item

    Keywords

    CAPM; testing for alpha; weak and spatial error cross-sectional dependence; S&P 500 securities; long; short equity strategy;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ces:ceswps:_6432. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/cesifde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Klaus Wohlrabe (email available below). General contact details of provider: https://edirc.repec.org/data/cesifde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.