IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v239y2024i2s0304407623001525.html
   My bibliography  Save this article

Power enhancement for testing multi-factor asset pricing models via Fisher’s method

Author

Listed:
  • Yu, Xiufan
  • Yao, Jiawei
  • Xue, Lingzhou

Abstract

Testing multi-factor asset pricing models is instrumental for asset pricing theory and practice. However, due to the accumulation of errors in estimating high-dimensional parameters, traditional quadratic-form tests such as the Wald test perform poorly against the sparse alternative hypothesis, i.e., a few mispriced assets. Fan et al. (2015b) introduced a powerful testing procedure by adding a power enhancement component to the Wald test statistic and proved power enhancement properties. To provide an alternative to their methodology, we first instantiate the power enhancement component by introducing a new maximum-form test statistic and then study the asymptotic joint distribution of the Wald test statistic and the maximum test statistic. We prove that these two test statistics are asymptotically independent. Given their asymptotic independence, we propose a new power-enhanced testing procedure to combine their respective power based on Fisher’s method (Fisher, 1925). Theoretically, we prove that the new power-enhanced test retains the desired nominal significance level and achieves asymptotically consistent power against more general alternatives. Furthermore, we demonstrate the finite-sample performance of our proposed power-enhanced test in both simulation studies and an empirical study of testing market efficiency using asset returns of the Russel-2000 portfolio.

Suggested Citation

  • Yu, Xiufan & Yao, Jiawei & Xue, Lingzhou, 2024. "Power enhancement for testing multi-factor asset pricing models via Fisher’s method," Journal of Econometrics, Elsevier, vol. 239(2).
  • Handle: RePEc:eee:econom:v:239:y:2024:i:2:s0304407623001525
    DOI: 10.1016/j.jeconom.2023.05.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407623001525
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2023.05.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fama, Eugene F & French, Kenneth R, 1992. "The Cross-Section of Expected Stock Returns," Journal of Finance, American Finance Association, vol. 47(2), pages 427-465, June.
    2. Michael C. Jensen, 1968. "The Performance Of Mutual Funds In The Period 1945–1964," Journal of Finance, American Finance Association, vol. 23(2), pages 389-416, May.
    3. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    4. Jianqing Fan & Yingying Li & Ke Yu, 2012. "Vast Volatility Matrix Estimation Using High-Frequency Data for Portfolio Selection," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 412-428, March.
    5. Stefano Giglio & Yuan Liao & Dacheng Xiu, 2021. "Thousands of Alpha Tests," NBER Chapters, in: Big Data: Long-Term Implications for Financial Markets and Firms, pages 3456, National Bureau of Economic Research, Inc.
    6. Stephen A. Ross, 2013. "The Arbitrage Theory of Capital Asset Pricing," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 1, pages 11-30, World Scientific Publishing Co. Pte. Ltd..
    7. Victor Chernozhukov & Denis Chetverikov & Kengo Kato & Aureo de Paula, 2019. "Inference on Causal and Structural Parameters using Many Moment Inequalities," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 86(5), pages 1867-1900.
    8. Huberman, Gur & Kandel, Shmuel & Stambaugh, Robert F, 1987. "Mimicking Portfolios and Exact Arbitrage Pricing," Journal of Finance, American Finance Association, vol. 42(1), pages 1-9, March.
    9. Fan, Jianqing & Han, Fang & Liu, Han & Vickers, Byron, 2016. "Robust inference of risks of large portfolios," Journal of Econometrics, Elsevier, vol. 194(2), pages 298-308.
    10. Wei Luo & Lingzhou Xue & Jiawei Yao & Xiufan Yu, 2022. "Inverse moment methods for sufficient forecasting using high-dimensional predictors [Eigenvalue ratio test for the number of factors]," Biometrika, Biometrika Trust, vol. 109(2), pages 473-487.
    11. Sermin Gungor & Richard Luger, 2016. "Multivariate Tests of Mean-Variance Efficiency and Spanning With a Large Number of Assets and Time-Varying Covariances," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(2), pages 161-175, April.
    12. Carhart, Mark M, 1997. "On Persistence in Mutual Fund Performance," Journal of Finance, American Finance Association, vol. 52(1), pages 57-82, March.
    13. Gongjun Xu & Lifeng Lin & Peng Wei & Wei Pan, 2016. "An adaptive two-sample test for high-dimensional means," Biometrika, Biometrika Trust, vol. 103(3), pages 609-624.
    14. Fan, Jianqing & Ke, Yuan & Liao, Yuan, 2021. "Augmented factor models with applications to validating market risk factors and forecasting bond risk premia," Journal of Econometrics, Elsevier, vol. 222(1), pages 269-294.
    15. Matias D. Cattaneo & Richard K. Crump & Max H. Farrell & Ernst Schaumburg, 2020. "Characteristic-Sorted Portfolios: Estimation and Inference," The Review of Economics and Statistics, MIT Press, vol. 102(3), pages 531-551, July.
    16. Tony Cai & Weidong Liu & Yin Xia, 2013. "Two-Sample Covariance Matrix Testing and Support Recovery in High-Dimensional and Sparse Settings," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 265-277, March.
    17. T. Tony Cai & Weidong Liu & Yin Xia, 2014. "Two-sample test of high dimensional means under dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(2), pages 349-372, March.
    18. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    19. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    20. Pesaran, M. H. & Yamagata, T., 2012. "Testing CAPM with a Large Number of Assets (Updated 28th March 2012)," Cambridge Working Papers in Economics 1210, Faculty of Economics, University of Cambridge.
    21. Feng, Long & Lan, Wei & Liu, Binghui & Ma, Yanyuan, 2022. "High-dimensional test for alpha in linear factor pricing models with sparse alternatives," Journal of Econometrics, Elsevier, vol. 229(1), pages 152-175.
    22. Kewei Hou & Chen Xue & Lu Zhang, 2015. "Editor's Choice Digesting Anomalies: An Investment Approach," The Review of Financial Studies, Society for Financial Studies, vol. 28(3), pages 650-705.
    23. Fama, Eugene F. & French, Kenneth R., 2015. "A five-factor asset pricing model," Journal of Financial Economics, Elsevier, vol. 116(1), pages 1-22.
    24. Qing Yang & Guangming Pan, 2017. "Weighted Statistic in Detecting Faint and Sparse Alternatives for High-Dimensional Covariance Matrices," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 188-200, January.
    25. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    26. Sermin Gungor & Richard Luger, 2013. "Testing Linear Factor Pricing Models With Large Cross Sections: A Distribution-Free Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 66-77, January.
    27. Gibbons, Michael R & Ross, Stephen A & Shanken, Jay, 1989. "A Test of the Efficiency of a Given Portfolio," Econometrica, Econometric Society, vol. 57(5), pages 1121-1152, September.
    28. A. Antoniadis, 1997. "Wavelets in statistics: A review," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 6(2), pages 97-130, August.
    29. Xie, Minge & Singh, Kesar & Strawderman, William E., 2011. "Confidence Distributions and a Unifying Framework for Meta-Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 320-333.
    30. Jianqing Fan & Donggyu Kim, 2018. "Robust High-Dimensional Volatility Matrix Estimation for High-Frequency Factor Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1268-1283, July.
    31. Rothman, Adam J. & Levina, Elizaveta & Zhu, Ji, 2009. "Generalized Thresholding of Large Covariance Matrices," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 177-186.
    32. Kim, Donggyu & Fan, Jianqing, 2019. "Factor GARCH-Itô models for high-frequency data with application to large volatility matrix prediction," Journal of Econometrics, Elsevier, vol. 208(2), pages 395-417.
    33. Fan, Jianqing & Xue, Lingzhou & Yao, Jiawei, 2017. "Sufficient forecasting using factor models," Journal of Econometrics, Elsevier, vol. 201(2), pages 292-306.
    34. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    35. N A Heard & P Rubin-Delanchy, 2018. "Choosing between methods of combining $p$-values," Biometrika, Biometrika Trust, vol. 105(1), pages 239-246.
    36. Pesaran, M. Hashem & Yamagata, Takashi, 2012. "Testing CAPM with a Large Number of Assets," IZA Discussion Papers 6469, Institute of Labor Economics (IZA).
    37. Jianqing Fan & Lingzhou Xue & Hui Zou, 2016. "Multitask Quantile Regression Under the Transnormal Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1726-1735, October.
    38. Fan, Jianqing & Fan, Yingying & Lv, Jinchi, 2008. "High dimensional covariance matrix estimation using a factor model," Journal of Econometrics, Elsevier, vol. 147(1), pages 186-197, November.
    39. Xiufan Yu & Jiawei Yao & Lingzhou Xue, 2022. "Nonparametric Estimation and Conformal Inference of the Sufficient Forecasting With a Diverging Number of Factors," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 342-354, January.
    40. Fan, Jianqing & Wang, Weichen & Zhong, Yiqiao, 2019. "Robust covariance estimation for approximate factor models," Journal of Econometrics, Elsevier, vol. 208(1), pages 5-22.
    41. Beaulieu, Marie-Claude & Dufour, Jean-Marie & Khalaf, Lynda, 2007. "Multivariate Tests of MeanVariance Efficiency With Possibly Non-Gaussian Errors: An Exact Simulation-Based Approach," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 398-410, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefano Giglio & Dacheng Xiu, 2017. "Inference on Risk Premia in the Presence of Omitted Factors," NBER Working Papers 23527, National Bureau of Economic Research, Inc.
    2. Fan, Jianqing & Ke, Yuan & Liao, Yuan, 2021. "Augmented factor models with applications to validating market risk factors and forecasting bond risk premia," Journal of Econometrics, Elsevier, vol. 222(1), pages 269-294.
    3. Kwangmin Jung & Donggyu Kim & Seunghyeon Yu, 2022. "Next generation models for portfolio risk management: An approach using financial big data," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 89(3), pages 765-787, September.
    4. Dai, Chaoxing & Lu, Kun & Xiu, Dacheng, 2019. "Knowing factors or factor loadings, or neither? Evaluating estimators of large covariance matrices with noisy and asynchronous data," Journal of Econometrics, Elsevier, vol. 208(1), pages 43-79.
    5. M Hashem Pesaran & Takashi Yamagata, 2024. "Testing for Alpha in Linear Factor Pricing Models with a Large Number of Securities," Journal of Financial Econometrics, Oxford University Press, vol. 22(2), pages 407-460.
    6. Feng, Long & Lan, Wei & Liu, Binghui & Ma, Yanyuan, 2022. "High-dimensional test for alpha in linear factor pricing models with sparse alternatives," Journal of Econometrics, Elsevier, vol. 229(1), pages 152-175.
    7. De Nard, Gianluca & Zhao, Zhao, 2023. "Using, taming or avoiding the factor zoo? A double-shrinkage estimator for covariance matrices," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 23-35.
    8. Bodnar, Taras & Reiß, Markus, 2016. "Exact and asymptotic tests on a factor model in low and large dimensions with applications," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 125-151.
    9. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    10. Kim, Soohun & Skoulakis, Georgios, 2018. "Ex-post risk premia estimation and asset pricing tests using large cross sections: The regression-calibration approach," Journal of Econometrics, Elsevier, vol. 204(2), pages 159-188.
    11. Fan, Jianqing & Xue, Lingzhou & Yao, Jiawei, 2017. "Sufficient forecasting using factor models," Journal of Econometrics, Elsevier, vol. 201(2), pages 292-306.
    12. Jianqing Fan & Alex Furger & Dacheng Xiu, 2016. "Incorporating Global Industrial Classification Standard Into Portfolio Allocation: A Simple Factor-Based Large Covariance Matrix Estimator With High-Frequency Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 489-503, October.
    13. Seung C. Ahn & Alex R. Horenstein, 2017. "Asset Pricing and Excess Returns over the Market Return," Working Papers 2017-12, University of Miami, Department of Economics.
    14. He, Yong & Zhang, Mingjuan & Zhang, Xinsheng & Zhou, Wang, 2020. "High-dimensional two-sample mean vectors test and support recovery with factor adjustment," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
    15. Jianqing Fan & Yuan Liao & Han Liu, 2016. "An overview of the estimation of large covariance and precision matrices," Econometrics Journal, Royal Economic Society, vol. 19(1), pages 1-32, February.
    16. Li, Y-N. & Chen, J. & Linton, O., 2021. "Estimation of Common Factors for Microstructure Noise and Efficient Price in a High-frequency Dual Factor Model," Cambridge Working Papers in Economics 2150, Faculty of Economics, University of Cambridge.
    17. Fan, Jianqing & Liao, Yuan & Shi, Xiaofeng, 2015. "Risks of large portfolios," Journal of Econometrics, Elsevier, vol. 186(2), pages 367-387.
    18. Li, Kunpeng & Li, Qi & Lu, Lina, 2018. "Quasi maximum likelihood analysis of high dimensional constrained factor models," Journal of Econometrics, Elsevier, vol. 206(2), pages 574-612.
    19. Choi, Sung Hoon & Kim, Donggyu, 2023. "Large volatility matrix analysis using global and national factor models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1917-1933.
    20. Marie Brière & Ariane Szafarz, 2021. "When it rains, it pours: Multifactor asset management in good and bad times," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 44(3), pages 641-669, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:239:y:2024:i:2:s0304407623001525. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.