IDEAS home Printed from https://ideas.repec.org/p/fip/fednsr/788.html

Characteristic-Sorted Portfolios: Estimation and Inference

Author

Abstract

Portfolio sorting is ubiquitous in the empirical finance literature, where it has been widely used to identify pricing anomalies. Despite its popularity, little attention has been paid to the statistical properties of the procedure. We develop a general framework for portfolio sorting by casting it as a nonparametric estimator. We present valid asymptotic inference methods, and a valid mean square error expansion of the estimator leading to an optimal choice for the number of portfolios. In practical settings, the optimal choice may be much larger than standard choices of five or ten. To illustrate the relevance of our results, we revisit the size and momentum anomalies.

Suggested Citation

  • Matias D. Cattaneo & Richard K. Crump & Max H. Farrell & Ernst Schaumburg, 2016. "Characteristic-Sorted Portfolios: Estimation and Inference," Staff Reports 788, Federal Reserve Bank of New York.
  • Handle: RePEc:fip:fednsr:788
    Note: Revised October 2016.
    as

    Download full text from publisher

    File URL: https://www.newyorkfed.org/research/staff_reports/sr788.html
    File Function: Summary
    Download Restriction: no

    File URL: https://www.newyorkfed.org/medialibrary/media/research/staff_reports/sr788.pdf?la=en
    File Function: Full text
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ni, Xuanming & Zheng, Tiantian & Zhao, Huimin & Zhu, Shushang, 2023. "High-dimensional portfolio optimization based on tree-structured factor model," Pacific-Basin Finance Journal, Elsevier, vol. 81(C).
    2. Joachim Freyberger & Andreas Neuhierl & Michael Weber, 2020. "Dissecting Characteristics Nonparametrically," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2326-2377.
    3. Chaieb, Ines & Langlois, Hugues & Scaillet, Olivier, 2021. "Factors and risk premia in individual international stock returns," Journal of Financial Economics, Elsevier, vol. 141(2), pages 669-692.
    4. Christophe J. GODLEWSKI & Katarzyna BYRKA-KITA & Renata GOLA & Jacek CYPRYJANSKI, 2022. "Silence is not golden anymore? Social media activity and stock market valuation in Europe," Working Papers of LaRGE Research Center 2022-04, Laboratoire de Recherche en Gestion et Economie (LaRGE), Université de Strasbourg.
    5. Yu, Xiufan & Yao, Jiawei & Xue, Lingzhou, 2024. "Power enhancement for testing multi-factor asset pricing models via Fisher’s method," Journal of Econometrics, Elsevier, vol. 239(2).
    6. Matias D. Cattaneo & Richard K. Crump & Max H. Farrell & Yingjie Feng, 2024. "On Binscatter," American Economic Review, American Economic Association, vol. 114(5), pages 1488-1514, May.
    7. Saizhuo Wang & Hao Kong & Jiadong Guo & Fengrui Hua & Yiyan Qi & Wanyun Zhou & Jiahao Zheng & Xinyu Wang & Lionel M. Ni & Jian Guo, 2025. "QuantBench: Benchmarking AI Methods for Quantitative Investment," Papers 2504.18600, arXiv.org.
    8. Austin Pollok, 2025. "Predicting Realized Variance Out of Sample: Can Anything Beat The Benchmark?," Papers 2506.07928, arXiv.org.
    9. Jianyuan Zhong & Zhijian Xu & Saizhuo Wang & Xiangyu Wen & Jian Guo & Qiang Xu, 2024. "DSPO: An End-to-End Framework for Direct Sorted Portfolio Construction," Papers 2405.15833, arXiv.org.
    10. Calice, Giovanni & Lin, Ming-Tsung, 2024. "Sovereign momentum currency returns," International Review of Financial Analysis, Elsevier, vol. 96(PB).
    11. Guillaume Coqueret, 2022. "Characteristics-driven returns in equilibrium," Papers 2203.07865, arXiv.org.
    12. Matias D. Cattaneo & Max H. Farrell & Yingjie Feng, 2018. "Large Sample Properties of Partitioning-Based Series Estimators," Papers 1804.04916, arXiv.org, revised Jun 2019.
    13. Kim, Junyong, 2024. "Zoom in on momentum," International Review of Financial Analysis, Elsevier, vol. 94(C).
    14. Matias D. Cattaneo & Richard K. Crump & Weining Wang, 2022. "Beta-Sorted Portfolios," Papers 2208.10974, arXiv.org, revised Nov 2024.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fednsr:788. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Gabriella Bucciarelli (email available below). General contact details of provider: https://edirc.repec.org/data/frbnyus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.