IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2504.18600.html
   My bibliography  Save this paper

QuantBench: Benchmarking AI Methods for Quantitative Investment

Author

Listed:
  • Saizhuo Wang
  • Hao Kong
  • Jiadong Guo
  • Fengrui Hua
  • Yiyan Qi
  • Wanyun Zhou
  • Jiahao Zheng
  • Xinyu Wang
  • Lionel M. Ni
  • Jian Guo

Abstract

The field of artificial intelligence (AI) in quantitative investment has seen significant advancements, yet it lacks a standardized benchmark aligned with industry practices. This gap hinders research progress and limits the practical application of academic innovations. We present QuantBench, an industrial-grade benchmark platform designed to address this critical need. QuantBench offers three key strengths: (1) standardization that aligns with quantitative investment industry practices, (2) flexibility to integrate various AI algorithms, and (3) full-pipeline coverage of the entire quantitative investment process. Our empirical studies using QuantBench reveal some critical research directions, including the need for continual learning to address distribution shifts, improved methods for modeling relational financial data, and more robust approaches to mitigate overfitting in low signal-to-noise environments. By providing a common ground for evaluation and fostering collaboration between researchers and practitioners, QuantBench aims to accelerate progress in AI for quantitative investment, similar to the impact of benchmark platforms in computer vision and natural language processing.

Suggested Citation

  • Saizhuo Wang & Hao Kong & Jiadong Guo & Fengrui Hua & Yiyan Qi & Wanyun Zhou & Jiahao Zheng & Xinyu Wang & Lionel M. Ni & Jian Guo, 2025. "QuantBench: Benchmarking AI Methods for Quantitative Investment," Papers 2504.18600, arXiv.org.
  • Handle: RePEc:arx:papers:2504.18600
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2504.18600
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thanh Trung Huynh & Minh Hieu Nguyen & Thanh Tam Nguyen & Phi Le Nguyen & Matthias Weidlich & Quoc Viet Hung Nguyen & Karl Aberer, 2022. "Efficient Integration of Multi-Order Dynamics and Internal Dynamics in Stock Movement Prediction," Papers 2211.07400, arXiv.org, revised Nov 2022.
    2. Tianping Zhang & Yuanqi Li & Yifei Jin & Jian Li, 2020. "AutoAlpha: an Efficient Hierarchical Evolutionary Algorithm for Mining Alpha Factors in Quantitative Investment," Papers 2002.08245, arXiv.org, revised Apr 2020.
    3. Matias D. Cattaneo & Richard K. Crump & Max H. Farrell & Ernst Schaumburg, 2020. "Characteristic-Sorted Portfolios: Estimation and Inference," The Review of Economics and Statistics, MIT Press, vol. 102(3), pages 531-551, July.
    4. Tom Liu & Stephen Roberts & Stefan Zohren, 2023. "Deep Inception Networks: A General End-to-End Framework for Multi-asset Quantitative Strategies," Papers 2307.05522, arXiv.org.
    5. Zhengyao Jiang & Dixing Xu & Jinjun Liang, 2017. "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem," Papers 1706.10059, arXiv.org, revised Jul 2017.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jian Guo & Heung-Yeung Shum, 2024. "Large Investment Model," Papers 2408.10255, arXiv.org, revised Aug 2024.
    2. Shuo Sun & Rundong Wang & Bo An, 2021. "Reinforcement Learning for Quantitative Trading," Papers 2109.13851, arXiv.org.
    3. Bokai Cao & Saizhuo Wang & Xinyi Lin & Xiaojun Wu & Haohan Zhang & Lionel M. Ni & Jian Guo, 2025. "From Deep Learning to LLMs: A survey of AI in Quantitative Investment," Papers 2503.21422, arXiv.org.
    4. Jiahua Xu & Yebo Feng & Daniel Perez & Benjamin Livshits, 2023. "Auto.gov: Learning-based Governance for Decentralized Finance (DeFi)," Papers 2302.09551, arXiv.org, revised May 2025.
    5. Amir Mosavi & Pedram Ghamisi & Yaser Faghan & Puhong Duan, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Papers 2004.01509, arXiv.org.
    6. Alexandre Carbonneau & Fr'ed'eric Godin, 2021. "Deep equal risk pricing of financial derivatives with non-translation invariant risk measures," Papers 2107.11340, arXiv.org.
    7. Fischer, Thomas G., 2018. "Reinforcement learning in financial markets - a survey," FAU Discussion Papers in Economics 12/2018, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    8. Charl Maree & Christian W. Omlin, 2022. "Balancing Profit, Risk, and Sustainability for Portfolio Management," Papers 2207.02134, arXiv.org.
    9. Matias D. Cattaneo & Richard K. Crump & Weining Wang, 2022. "Beta-Sorted Portfolios," Papers 2208.10974, arXiv.org, revised Nov 2024.
    10. Mei-Li Shen & Cheng-Feng Lee & Hsiou-Hsiang Liu & Po-Yin Chang & Cheng-Hong Yang, 2021. "An Effective Hybrid Approach for Forecasting Currency Exchange Rates," Sustainability, MDPI, vol. 13(5), pages 1-29, March.
    11. Martino Banchio & Giacomo Mantegazza, 2022. "Artificial Intelligence and Spontaneous Collusion," Papers 2202.05946, arXiv.org, revised Sep 2023.
    12. Miquel Noguer i Alonso & Sonam Srivastava, 2020. "Deep Reinforcement Learning for Asset Allocation in US Equities," Papers 2010.04404, arXiv.org.
    13. Mengying Zhu & Xiaolin Zheng & Yan Wang & Yuyuan Li & Qianqiao Liang, 2019. "Adaptive Portfolio by Solving Multi-armed Bandit via Thompson Sampling," Papers 1911.05309, arXiv.org, revised Nov 2019.
    14. Amirhosein Mosavi & Yaser Faghan & Pedram Ghamisi & Puhong Duan & Sina Faizollahzadeh Ardabili & Ely Salwana & Shahab S. Band, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Mathematics, MDPI, vol. 8(10), pages 1-42, September.
    15. Ben Hambly & Renyuan Xu & Huining Yang, 2021. "Recent Advances in Reinforcement Learning in Finance," Papers 2112.04553, arXiv.org, revised Feb 2023.
    16. Nymisha Bandi & Theja Tulabandhula, 2020. "Off-Policy Optimization of Portfolio Allocation Policies under Constraints," Papers 2012.11715, arXiv.org.
    17. Alessio Brini & Daniele Tantari, 2021. "Deep Reinforcement Trading with Predictable Returns," Papers 2104.14683, arXiv.org, revised May 2023.
    18. Tom Liu & Stefan Zohren, 2023. "Multi-Factor Inception: What to Do with All of These Features?," Papers 2307.13832, arXiv.org.
    19. Ni, Xuanming & Zheng, Tiantian & Zhao, Huimin & Zhu, Shushang, 2023. "High-dimensional portfolio optimization based on tree-structured factor model," Pacific-Basin Finance Journal, Elsevier, vol. 81(C).
    20. Carbonneau, Alexandre, 2021. "Deep hedging of long-term financial derivatives," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 327-340.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2504.18600. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.