IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2503.21422.html
   My bibliography  Save this paper

From Deep Learning to LLMs: A survey of AI in Quantitative Investment

Author

Listed:
  • Bokai Cao
  • Saizhuo Wang
  • Xinyi Lin
  • Xiaojun Wu
  • Haohan Zhang
  • Lionel M. Ni
  • Jian Guo

Abstract

Quantitative investment (quant) is an emerging, technology-driven approach in asset management, increasingy shaped by advancements in artificial intelligence. Recent advances in deep learning and large language models (LLMs) for quant finance have improved predictive modeling and enabled agent-based automation, suggesting a potential paradigm shift in this field. In this survey, taking alpha strategy as a representative example, we explore how AI contributes to the quantitative investment pipeline. We first examine the early stage of quant research, centered on human-crafted features and traditional statistical models with an established alpha pipeline. We then discuss the rise of deep learning, which enabled scalable modeling across the entire pipeline from data processing to order execution. Building on this, we highlight the emerging role of LLMs in extending AI beyond prediction, empowering autonomous agents to process unstructured data, generate alphas, and support self-iterative workflows.

Suggested Citation

  • Bokai Cao & Saizhuo Wang & Xinyi Lin & Xiaojun Wu & Haohan Zhang & Lionel M. Ni & Jian Guo, 2025. "From Deep Learning to LLMs: A survey of AI in Quantitative Investment," Papers 2503.21422, arXiv.org.
  • Handle: RePEc:arx:papers:2503.21422
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2503.21422
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fama, Eugene F & French, Kenneth R, 1992. "The Cross-Section of Expected Stock Returns," Journal of Finance, American Finance Association, vol. 47(2), pages 427-465, June.
    2. Benjamin Chabot & Eric Ghysels & Ravi Jagannathan, 2014. "Momentum Trading, Return Chasing, and Predictable Crashes," NBER Working Papers 20660, National Bureau of Economic Research, Inc.
    3. Stephen A. Ross, 2013. "The Arbitrage Theory of Capital Asset Pricing," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 1, pages 11-30, World Scientific Publishing Co. Pte. Ltd..
    4. Brian Ning & Franco Ho Ting Lin & Sebastian Jaimungal, 2021. "Double Deep Q-Learning for Optimal Execution," Applied Mathematical Finance, Taylor & Francis Journals, vol. 28(4), pages 361-380, July.
    5. Chiarella, Carl & Iori, Giulia, 2009. "The impact of heterogeneous trading rules on the limit order book and order flows," Journal of Economic Dynamics and Control, Elsevier, vol. 33(3), pages 525-537.
    6. Anatoly B. Schmidt, 2019. "Managing portfolio diversity within the mean variance theory," Annals of Operations Research, Springer, vol. 282(1), pages 315-329, November.
    7. Andrea Coletta & Joseph Jerome & Rahul Savani & Svitlana Vyetrenko, 2023. "Conditional Generators for Limit Order Book Environments: Explainability, Challenges, and Robustness," Papers 2306.12806, arXiv.org.
    8. Tianping Zhang & Yuanqi Li & Yifei Jin & Jian Li, 2020. "AutoAlpha: an Efficient Hierarchical Evolutionary Algorithm for Mining Alpha Factors in Quantitative Investment," Papers 2002.08245, arXiv.org, revised Apr 2020.
    9. Magnus Wiese & Robert Knobloch & Ralf Korn & Peter Kretschmer, 2020. "Quant GANs: deep generation of financial time series," Quantitative Finance, Taylor & Francis Journals, vol. 20(9), pages 1419-1440, September.
    10. Zhang, Yunfei & Zhou, Zhihua & Liu, Junwei & Yuan, Jianjuan, 2022. "Data augmentation for improving heating load prediction of heating substation based on TimeGAN," Energy, Elsevier, vol. 260(C).
    11. Junjie Li & Yang Liu & Weiqing Liu & Shikai Fang & Lewen Wang & Chang Xu & Jiang Bian, 2024. "MarS: a Financial Market Simulation Engine Powered by Generative Foundation Model," Papers 2409.07486, arXiv.org, revised Mar 2025.
    12. Antonio Briola & Jeremy Turiel & Tomaso Aste, 2020. "Deep Learning modeling of Limit Order Book: a comparative perspective," Papers 2007.07319, arXiv.org, revised Oct 2020.
    13. Milena Vuletić & Felix Prenzel & Mihai Cucuringu, 2024. "Fin-GAN: forecasting and classifying financial time series via generative adversarial networks," Quantitative Finance, Taylor & Francis Journals, vol. 24(2), pages 175-199, January.
    14. Ziniu Hu & Weiqing Liu & Jiang Bian & Xuanzhe Liu & Tie-Yan Liu, 2017. "Listening to Chaotic Whispers: A Deep Learning Framework for News-oriented Stock Trend Prediction," Papers 1712.02136, arXiv.org, revised Feb 2019.
    15. Feng Zhang & Ruite Guo & Honggao Cao, 2020. "Information Coefficient as a Performance Measure of Stock Selection Models," Papers 2010.08601, arXiv.org.
    16. Shijie Wu & Ozan Irsoy & Steven Lu & Vadim Dabravolski & Mark Dredze & Sebastian Gehrmann & Prabhanjan Kambadur & David Rosenberg & Gideon Mann, 2023. "BloombergGPT: A Large Language Model for Finance," Papers 2303.17564, arXiv.org, revised Dec 2023.
    17. Yu-Hao Huang & Chang Xu & Yang Liu & Weiqing Liu & Wu-Jun Li & Jiang Bian, 2024. "Controllable Financial Market Generation with Diffusion Guided Meta Agent," Papers 2408.12991, arXiv.org, revised Sep 2024.
    18. Carl Chiarella & Giulia Iori, 2002. "A simulation analysis of the microstructure of double auction markets," Quantitative Finance, Taylor & Francis Journals, vol. 2(5), pages 346-353.
    19. Mengyu Wang & Shay B. Cohen & Tiejun Ma, 2024. "Modeling News Interactions and Influence for Financial Market Prediction," Papers 2410.10614, arXiv.org.
    20. Thanos Konstantinidis & Giorgos Iacovides & Mingxue Xu & Tony G. Constantinides & Danilo Mandic, 2024. "FinLlama: Financial Sentiment Classification for Algorithmic Trading Applications," Papers 2403.12285, arXiv.org.
    21. Weizhe Ren & Yichen Qin & Yang Li, 2024. "Alpha Mining and Enhancing via Warm Start Genetic Programming for Quantitative Investment," Papers 2412.00896, arXiv.org.
    22. Dieter Hendricks & Diane Wilcox, 2014. "A reinforcement learning extension to the Almgren-Chriss model for optimal trade execution," Papers 1403.2229, arXiv.org.
    23. Bertsimas, Dimitris & Lo, Andrew W., 1998. "Optimal control of execution costs," Journal of Financial Markets, Elsevier, vol. 1(1), pages 1-50, April.
    24. Anis, Hassan T. & Kwon, Roy H., 2025. "End-to-end, decision-based, cardinality-constrained portfolio optimization," European Journal of Operational Research, Elsevier, vol. 320(3), pages 739-753.
    25. Alex Kim & Maximilian Muhn & Valeri Nikolaev, 2024. "Financial Statement Analysis with Large Language Models," Papers 2407.17866, arXiv.org, revised Feb 2025.
    26. Robert Almgren, 2003. "Optimal execution with nonlinear impact functions and trading-enhanced risk," Applied Mathematical Finance, Taylor & Francis Journals, vol. 10(1), pages 1-18.
    27. Zura Kakushadze, 2016. "101 Formulaic Alphas," Papers 1601.00991, arXiv.org, revised Mar 2016.
    28. Thomas Lux & Michele Marchesi, 1999. "Scaling and criticality in a stochastic multi-agent model of a financial market," Nature, Nature, vol. 397(6719), pages 498-500, February.
    29. Ryan Donnelly, 2022. "Optimal Execution: A Review," Applied Mathematical Finance, Taylor & Francis Journals, vol. 29(3), pages 181-212, May.
    30. Yupeng Cao & Zhi Chen & Qingyun Pei & Fabrizio Dimino & Lorenzo Ausiello & Prashant Kumar & K. P. Subbalakshmi & Papa Momar Ndiaye, 2024. "RiskLabs: Predicting Financial Risk Using Large Language Model Based on Multi-Sources Data," Papers 2404.07452, arXiv.org.
    31. Zhengyao Jiang & Dixing Xu & Jinjun Liang, 2017. "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem," Papers 1706.10059, arXiv.org, revised Jul 2017.
    32. Forsyth, P.A. & Kennedy, J.S. & Tse, S.T. & Windcliff, H., 2012. "Optimal trade execution: A mean quadratic variation approach," Journal of Economic Dynamics and Control, Elsevier, vol. 36(12), pages 1971-1991.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bokai Cao & Xueyuan Lin & Yiyan Qi & Chengjin Xu & Cehao Yang & Jian Guo, 2025. "Financial Wind Tunnel: A Retrieval-Augmented Market Simulator," Papers 2503.17909, arXiv.org.
    2. Shuo Sun & Rundong Wang & Bo An, 2021. "Reinforcement Learning for Quantitative Trading," Papers 2109.13851, arXiv.org.
    3. Jian Guo & Heung-Yeung Shum, 2024. "Large Investment Model," Papers 2408.10255, arXiv.org, revised Aug 2024.
    4. Yu-Hao Huang & Chang Xu & Yang Liu & Weiqing Liu & Wu-Jun Li & Jiang Bian, 2024. "Controllable Financial Market Generation with Diffusion Guided Meta Agent," Papers 2408.12991, arXiv.org, revised Sep 2024.
    5. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034, Decembrie.
    6. Marcello Monga, 2024. "Automated Market Making and Decentralized Finance," Papers 2407.16885, arXiv.org.
    7. Alessio Emanuele Biondo, 2020. "Information versus imitation in a real-time agent-based model of financial markets," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 15(3), pages 613-631, July.
    8. Jian Guo & Saizhuo Wang & Lionel M. Ni & Heung-Yeung Shum, 2022. "Quant 4.0: Engineering Quantitative Investment with Automated, Explainable and Knowledge-driven Artificial Intelligence," Papers 2301.04020, arXiv.org.
    9. Blaurock, Ivonne & Schmitt, Noemi & Westerhoff, Frank, 2018. "Market entry waves and volatility outbursts in stock markets," Journal of Economic Behavior & Organization, Elsevier, vol. 153(C), pages 19-37.
    10. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    11. Roberto Mota Navarro & Hernán Larralde, 2017. "A detailed heterogeneous agent model for a single asset financial market with trading via an order book," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-27, February.
    12. Eyal Neuman & Alexander Schied, 2016. "Optimal portfolio liquidation in target zone models and catalytic superprocesses," Finance and Stochastics, Springer, vol. 20(2), pages 495-509, April.
    13. Alessio Emanuele Biondo, 2019. "Order book modeling and financial stability," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 14(3), pages 469-489, September.
    14. Xiaotao Zhang & Jing Ping & Tao Zhu & Yuelei Li & Xiong Xiong, 2016. "Are Price Limits Effective? An Examination of an Artificial Stock Market," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-21, August.
    15. Luis Goncalves de Faria, 2022. "An Agent-Based Model With Realistic Financial Time Series: A Method for Agent-Based Models Validation," Papers 2206.09772, arXiv.org.
    16. Iris Lucas & Michel Cotsaftis & Cyrille Bertelle, 2017. "Heterogeneity and Self-Organization of Complex Systems Through an Application to Financial Market with Multiagent Systems," Post-Print hal-02114933, HAL.
    17. Roberto Mota Navarro & Hern'an Larralde Ridaura, 2016. "A detailed heterogeneous agent model for a single asset financial market with trading via an order book," Papers 1601.00229, arXiv.org, revised Jul 2016.
    18. Iwao Maeda & David deGraw & Michiharu Kitano & Hiroyasu Matsushima & Hiroki Sakaji & Kiyoshi Izumi & Atsuo Kato, 2020. "Deep Reinforcement Learning in Agent Based Financial Market Simulation," JRFM, MDPI, vol. 13(4), pages 1-17, April.
    19. Biondo, Alessio Emanuele, 2018. "Learning to forecast, risk aversion, and microstructural aspects of financial stability," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 12, pages 1-21.
    20. Forsyth, P.A. & Kennedy, J.S. & Tse, S.T. & Windcliff, H., 2012. "Optimal trade execution: A mean quadratic variation approach," Journal of Economic Dynamics and Control, Elsevier, vol. 36(12), pages 1971-1991.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.21422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.