IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1706.10059.html
   My bibliography  Save this paper

A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem

Author

Listed:
  • Zhengyao Jiang
  • Dixing Xu
  • Jinjun Liang

Abstract

Financial portfolio management is the process of constant redistribution of a fund into different financial products. This paper presents a financial-model-free Reinforcement Learning framework to provide a deep machine learning solution to the portfolio management problem. The framework consists of the Ensemble of Identical Independent Evaluators (EIIE) topology, a Portfolio-Vector Memory (PVM), an Online Stochastic Batch Learning (OSBL) scheme, and a fully exploiting and explicit reward function. This framework is realized in three instants in this work with a Convolutional Neural Network (CNN), a basic Recurrent Neural Network (RNN), and a Long Short-Term Memory (LSTM). They are, along with a number of recently reviewed or published portfolio-selection strategies, examined in three back-test experiments with a trading period of 30 minutes in a cryptocurrency market. Cryptocurrencies are electronic and decentralized alternatives to government-issued money, with Bitcoin as the best-known example of a cryptocurrency. All three instances of the framework monopolize the top three positions in all experiments, outdistancing other compared trading algorithms. Although with a high commission rate of 0.25% in the backtests, the framework is able to achieve at least 4-fold returns in 50 days.

Suggested Citation

  • Zhengyao Jiang & Dixing Xu & Jinjun Liang, 2017. "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem," Papers 1706.10059, arXiv.org, revised Jul 2017.
  • Handle: RePEc:arx:papers:1706.10059
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1706.10059
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrew W. Lo & Harry Mamaysky & Jiang Wang, 2000. "Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation," Journal of Finance, American Finance Association, vol. 55(4), pages 1705-1770, August.
    2. Mih�ly Ormos & Andr�s Urb�n, 2013. "Performance analysis of log-optimal portfolio strategies with transaction costs," Quantitative Finance, Taylor & Francis Journals, vol. 13(10), pages 1587-1597, October.
    3. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    4. Andrew W. Lo & Harry Mamaysky & Jiang Wang, 2000. "Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation," Journal of Finance, American Finance Association, vol. 55(4), pages 1705-1765, August.
    5. David P. Helmbold & Robert E. Schapire & Yoram Singer & Manfred K. Warmuth, 1998. "On‐Line Portfolio Selection Using Multiplicative Updates," Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 325-347, October.
    6. László Györfi & Gábor Lugosi & Frederic Udina, 2006. "Nonparametric Kernel‐Based Sequential Investment Strategies," Mathematical Finance, Wiley Blackwell, vol. 16(2), pages 337-357, April.
    7. Thomas M. Cover, 1991. "Universal Portfolios," Mathematical Finance, Wiley Blackwell, vol. 1(1), pages 1-29, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vajda, István & Ottucsák, György, 2006. "Empirikus portfólióstratégiák [Empirical portfolio strategies]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(7), pages 624-640.
    2. Shuo Sun & Rundong Wang & Bo An, 2021. "Reinforcement Learning for Quantitative Trading," Papers 2109.13851, arXiv.org.
    3. Chia-Lin Chang & Jukka Ilomäki & Hannu Laurila & Michael McAleer, 2018. "Long Run Returns Predictability and Volatility with Moving Averages," Risks, MDPI, vol. 6(4), pages 1-18, September.
    4. Seung-Hyun Moon & Yong-Hyuk Kim & Byung-Ro Moon, 2019. "Empirical investigation of state-of-the-art mean reversion strategies for equity markets," Papers 1909.04327, arXiv.org.
    5. Man Yiu Tsang & Tony Sit & Hoi Ying Wong, 2022. "Adaptive Robust Online Portfolio Selection," Papers 2206.01064, arXiv.org.
    6. Ormos, Mihály & Urbán, András & Zoltán, Tamás, 2009. "Logoptimális portfóliók empirikus vizsgálata [Empirical analysis of log-optimal portfolios]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(1), pages 1-18.
    7. Bin Li & Steven C. H. Hoi, 2012. "On-Line Portfolio Selection with Moving Average Reversion," Papers 1206.4626, arXiv.org.
    8. Ha, Youngmin & Zhang, Hai, 2020. "Algorithmic trading for online portfolio selection under limited market liquidity," European Journal of Operational Research, Elsevier, vol. 286(3), pages 1033-1051.
    9. Jukka Ilomaki & Hannu Laurila & Michael McAleer, 2018. "Simple Market Timing with Moving Averages," Tinbergen Institute Discussion Papers 18-048/III, Tinbergen Institute.
    10. Han, Yufeng & Zhou, Guofu & Zhu, Yingzi, 2016. "A trend factor: Any economic gains from using information over investment horizons?," Journal of Financial Economics, Elsevier, vol. 122(2), pages 352-375.
    11. Roujia Li & Jia Liu, 2022. "Online Portfolio Selection with Long-Short Term Forecasting," SN Operations Research Forum, Springer, vol. 3(4), pages 1-15, December.
    12. Jukka Ilomäki & Hannu Laurila & Michael McAleer, 2018. "Market Timing with Moving Averages," Sustainability, MDPI, vol. 10(7), pages 1-25, June.
    13. Ting-Kam Leonard Wong, 2015. "Universal portfolios in stochastic portfolio theory," Papers 1510.02808, arXiv.org, revised Dec 2016.
    14. Guy Uziel & Ran El-Yaniv, 2017. "Growth-Optimal Portfolio Selection under CVaR Constraints," Papers 1705.09800, arXiv.org.
    15. Guo, Sini & Gu, Jia-Wen & Ching, Wai-Ki, 2021. "Adaptive online portfolio selection with transaction costs," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1074-1086.
    16. Paskalis Glabadanidis, 2014. "The Market Timing Power of Moving Averages: Evidence from US REITs and REIT Indexes," International Review of Finance, International Review of Finance Ltd., vol. 14(2), pages 161-202, June.
    17. Bin Li & Steven C. H. Hoi, 2012. "Online Portfolio Selection: A Survey," Papers 1212.2129, arXiv.org, revised May 2013.
    18. Adamantios Ntakaris & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2019. "Mid-price Prediction Based on Machine Learning Methods with Technical and Quantitative Indicators," Papers 1907.09452, arXiv.org.
    19. Giuliano Lorenzoni & Adrian Pizzinga & Rodrigo Atherino & Cristiano Fernandes & Rosane Riera Freire, 2007. "On the Statistical Validation of Technical Analysis," Brazilian Review of Finance, Brazilian Society of Finance, vol. 5(1), pages 3-28.
    20. Ottucsák György & Vajda István, 2007. "An asymptotic analysis of the mean-variance portfolio selection," Statistics & Risk Modeling, De Gruyter, vol. 25(1/2007), pages 1-24, January.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1706.10059. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.