IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v66y2025i3d10.1007_s10614-024-10786-z.html
   My bibliography  Save this article

Integrating Weak Aggregating Algorithm and Reinforcement Learning for Online Portfolio Selection: The WARL Strategy

Author

Listed:
  • Hao Chen

    (Hohai University Business School)

  • Changxin Xu

    (Hohai University Business School)

  • Zhiliang Xu

    (Hohai University Business School)

Abstract

Online portfolio selection is an open and fundamental problem that has been attracting the attention of numerous researchers. Our aim is to address the challenges posed by the dynamic and complex financial market environment, where single investment strategies often face difficulties in adapting to rapid changes and unexpected events. Thus, we introduced the WARL strategy for online portfolio selection, which aggregated a heterogeneous expert set using a meta-learning approach called the weak aggregating algorithm (WAA). We replaced the online decision-makers in WAA with a reinforcement learning (RL) agent and proposed a novel reward function accounting for multiple objectives and event-triggering mechanisms. Based on real-world data numerical experiments, the WARL strategy outperforms the comparison strategies in a multi-metric evaluation. The comprehensive analysis conducted in this study supports the conclusion that the WARL strategy serves as a dependable and adaptive investment option, offering investors an effective means to optimize portfolio returns while effectively managing risks.

Suggested Citation

  • Hao Chen & Changxin Xu & Zhiliang Xu, 2025. "Integrating Weak Aggregating Algorithm and Reinforcement Learning for Online Portfolio Selection: The WARL Strategy," Computational Economics, Springer;Society for Computational Economics, vol. 66(3), pages 2001-2027, September.
  • Handle: RePEc:kap:compec:v:66:y:2025:i:3:d:10.1007_s10614-024-10786-z
    DOI: 10.1007/s10614-024-10786-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-024-10786-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-024-10786-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Petturiti, Davide & Vantaggi, Barbara, 2024. "The impact of ambiguity on dynamic portfolio selection in the epsilon-contaminated binomial market model," European Journal of Operational Research, Elsevier, vol. 314(3), pages 1029-1039.
    2. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    3. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    4. Györfi László & Udina Frederic & Walk Harro, 2008. "Nonparametric nearest neighbor based empirical portfolio selection strategies," Statistics & Risk Modeling, De Gruyter, vol. 26(2), pages 145-157, March.
    5. David P. Helmbold & Robert E. Schapire & Yoram Singer & Manfred K. Warmuth, 1998. "On‐Line Portfolio Selection Using Multiplicative Updates," Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 325-347, October.
    6. Bin Li & Steven C. H. Hoi, 2012. "On-Line Portfolio Selection with Moving Average Reversion," Papers 1206.4626, arXiv.org.
    7. Xingyu Yang & Jin’an He & Hong Lin & Yong Zhang, 2020. "Boosting Exponential Gradient Strategy for Online Portfolio Selection: An Aggregating Experts’ Advice Method," Computational Economics, Springer;Society for Computational Economics, vol. 55(1), pages 231-251, January.
    8. Zhengyao Jiang & Dixing Xu & Jinjun Liang, 2017. "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem," Papers 1706.10059, arXiv.org, revised Jul 2017.
    9. Yong Zhang & Xingyu Yang, 2017. "Online Portfolio Selection Strategy Based on Combining Experts’ Advice," Computational Economics, Springer;Society for Computational Economics, vol. 50(1), pages 141-159, June.
    10. Thomas M. Cover, 1991. "Universal Portfolios," Mathematical Finance, Wiley Blackwell, vol. 1(1), pages 1-29, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tsang, Man Yiu & Sit, Tony & Wong, Hoi Ying, 2025. "Adaptive robust online portfolio selection," European Journal of Operational Research, Elsevier, vol. 321(1), pages 214-230.
    2. Vajda, István & Ottucsák, György, 2006. "Empirikus portfólióstratégiák [Empirical portfolio strategies]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(7), pages 624-640.
    3. Guo, Sini & Gu, Jia-Wen & Ching, Wai-Ki, 2021. "Adaptive online portfolio selection with transaction costs," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1074-1086.
    4. Jin’an He & Shicheng Yin & Fangping Peng, 2024. "Weak aggregating specialist algorithm for online portfolio selection," Computational Economics, Springer;Society for Computational Economics, vol. 63(6), pages 2405-2434, June.
    5. Fereydooni, Ali & Barak, Sasan & Asaad Sajadi, Seyed Mehrzad, 2024. "A novel online portfolio selection approach based on pattern matching and ESG factors," Omega, Elsevier, vol. 123(C).
    6. Ha, Youngmin & Zhang, Hai, 2020. "Algorithmic trading for online portfolio selection under limited market liquidity," European Journal of Operational Research, Elsevier, vol. 286(3), pages 1033-1051.
    7. Shuo Sun & Rundong Wang & Bo An, 2021. "Reinforcement Learning for Quantitative Trading," Papers 2109.13851, arXiv.org.
    8. Lyu, Benmeng & Wu, Boqian & Guo, Sini & Gu, Jia-Wen & Ching, Wai-Ki, 2024. "Robust online portfolio optimization with cash flows," Omega, Elsevier, vol. 129(C).
    9. Guo, Sini & Gu, Jia-Wen & Fok, Christopher H. & Ching, Wai-Ki, 2023. "Online portfolio selection with state-dependent price estimators and transaction costs," European Journal of Operational Research, Elsevier, vol. 311(1), pages 333-353.
    10. Chu, Gang & Zhang, Wei & Sun, Guofeng & Zhang, Xiaotao, 2019. "A new online portfolio selection algorithm based on Kalman Filter and anti-correlation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    11. Guy Uziel & Ran El-Yaniv, 2017. "Growth-Optimal Portfolio Selection under CVaR Constraints," Papers 1705.09800, arXiv.org.
    12. Bin Li & Steven C. H. Hoi, 2012. "Online Portfolio Selection: A Survey," Papers 1212.2129, arXiv.org, revised May 2013.
    13. Man Yiu Tsang & Tony Sit & Hoi Ying Wong, 2022. "Adaptive Robust Online Portfolio Selection," Papers 2206.01064, arXiv.org.
    14. Bin Li & Steven C. H. Hoi, 2012. "On-Line Portfolio Selection with Moving Average Reversion," Papers 1206.4626, arXiv.org.
    15. Roujia Li & Jia Liu, 2022. "Online Portfolio Selection with Long-Short Term Forecasting," SN Operations Research Forum, Springer, vol. 3(4), pages 1-15, December.
    16. Ting-Kam Leonard Wong, 2015. "Universal portfolios in stochastic portfolio theory," Papers 1510.02808, arXiv.org, revised Dec 2016.
    17. Yong Zhang & Xingyu Yang, 2017. "Online Portfolio Selection Strategy Based on Combining Experts’ Advice," Computational Economics, Springer;Society for Computational Economics, vol. 50(1), pages 141-159, June.
    18. Zhengyao Jiang & Dixing Xu & Jinjun Liang, 2017. "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem," Papers 1706.10059, arXiv.org, revised Jul 2017.
    19. Yunan Ye & Hengzhi Pei & Boxin Wang & Pin-Yu Chen & Yada Zhu & Jun Xiao & Bo Li, 2020. "Reinforcement-Learning based Portfolio Management with Augmented Asset Movement Prediction States," Papers 2002.05780, arXiv.org.
    20. Xingyu Yang & Jin’an He & Hong Lin & Yong Zhang, 2020. "Boosting Exponential Gradient Strategy for Online Portfolio Selection: An Aggregating Experts’ Advice Method," Computational Economics, Springer;Society for Computational Economics, vol. 55(1), pages 231-251, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:66:y:2025:i:3:d:10.1007_s10614-024-10786-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.