IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i10p1640-d417900.html
   My bibliography  Save this article

Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics

Author

Listed:
  • Amirhosein Mosavi

    (Environmental Quality, Atmospheric Science and Climate Change Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam
    Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam)

  • Yaser Faghan

    (Instituto Superior de Economia e Gestao, University of Lisbon, 1200-781 Lisbon, Portugal)

  • Pedram Ghamisi

    (Helmholtz-Zentrum Dresden-Rossendorf, Chemnitzer Str. 40, D-09599 Freiberg, Germany
    Department of Physics, Faculty of Science, the University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium)

  • Puhong Duan

    (College of Electrical and Information Engineering, Hunan University, Changsha 410082, China)

  • Sina Faizollahzadeh Ardabili

    (Department of Biosystem Engineering, University of Mohaghegh Ardabili, Ardabil 5619911367, Iran)

  • Ely Salwana

    (Institute of IR4.0, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia)

  • Shahab S. Band

    (Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
    Future Technology Research Center, College of Future, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan)

Abstract

The popularity of deep reinforcement learning (DRL) applications in economics has increased exponentially. DRL, through a wide range of capabilities from reinforcement learning (RL) to deep learning (DL), offers vast opportunities for handling sophisticated dynamic economics systems. DRL is characterized by scalability with the potential to be applied to high-dimensional problems in conjunction with noisy and nonlinear patterns of economic data. In this paper, we initially consider a brief review of DL, RL, and deep RL methods in diverse applications in economics, providing an in-depth insight into the state-of-the-art. Furthermore, the architecture of DRL applied to economic applications is investigated in order to highlight the complexity, robustness, accuracy, performance, computational tasks, risk constraints, and profitability. The survey results indicate that DRL can provide better performance and higher efficiency as compared to the traditional algorithms while facing real economic problems in the presence of risk parameters and the ever-increasing uncertainties.

Suggested Citation

  • Amirhosein Mosavi & Yaser Faghan & Pedram Ghamisi & Puhong Duan & Sina Faizollahzadeh Ardabili & Ely Salwana & Shahab S. Band, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Mathematics, MDPI, vol. 8(10), pages 1-42, September.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:10:p:1640-:d:417900
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/10/1640/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/10/1640/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pavlov Gregory, 2011. "Optimal Mechanism for Selling Two Goods," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 11(1), pages 1-35, February.
    2. Hutchinson, James M & Lo, Andrew W & Poggio, Tomaso, 1994. "A Nonparametric Approach to Pricing and Hedging Derivative Securities via Learning Networks," Journal of Finance, American Finance Association, vol. 49(3), pages 851-889, July.
    3. Peter Martey Addo & Dominique Guegan & Bertrand Hassani, 2018. "Credit Risk Analysis using Machine and Deep learning models," Working Papers 2018:08, Department of Economics, University of Venice "Ca' Foscari".
    4. Peter Martey Addo & Dominique Guegan & Bertrand Hassani, 2018. "Credit Risk Analysis using Machine and Deep Learning models," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01719983, HAL.
    5. Thomas R. Cook & Aaron Smalter Hall, 2017. "Macroeconomic Indicator Forecasting with Deep Neural Networks," Research Working Paper RWP 17-11, Federal Reserve Bank of Kansas City.
    6. Zhengyao Jiang & Dixing Xu & Jinjun Liang, 2017. "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem," Papers 1706.10059, arXiv.org, revised Jul 2017.
    7. Zhipeng Liang & Hao Chen & Junhao Zhu & Kangkang Jiang & Yanran Li, 2018. "Adversarial Deep Reinforcement Learning in Portfolio Management," Papers 1808.09940, arXiv.org, revised Nov 2018.
    8. Xiao-Yang Liu & Zhuoran Xiong & Shan Zhong & Hongyang Yang & Anwar Walid, 2018. "Practical Deep Reinforcement Learning Approach for Stock Trading," Papers 1811.07522, arXiv.org, revised Jul 2022.
    9. Estrella, Arturo & Hardouvelis, Gikas A, 1991. "The Term Structure as a Predictor of Real Economic Activity," Journal of Finance, American Finance Association, vol. 46(2), pages 555-576, June.
    10. Roger B. Myerson, 1981. "Optimal Auction Design," Mathematics of Operations Research, INFORMS, vol. 6(1), pages 58-73, February.
    11. Saeed Nosratabadi & Amir Mosavi & Puhong Duan & Pedram Ghamisi, 2020. "Data Science in Economics," Papers 2003.13422, arXiv.org.
    12. Xinyi Li & Yinchuan Li & Yuancheng Zhan & Xiao-Yang Liu, 2019. "Optimistic Bull or Pessimistic Bear: Adaptive Deep Reinforcement Learning for Stock Portfolio Allocation," Papers 1907.01503, arXiv.org.
    13. Dominique Guegan & Peter Martey Addo & Bertrand Hassani, 2018. "Credit Risk Analysis Using Machine and Deep Learning Models," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01835164, HAL.
    14. Olivier Guéant & Pierre Louis Lions & Jean-Michel Lasry, 2011. "Mean Field Games and Applications," Post-Print hal-01393103, HAL.
    15. Dominique Guegan, 2018. "Credit Risk Analysis Using machine and Deep Learning Models," Post-Print halshs-01889154, HAL.
    16. Manelli, Alejandro M. & Vincent, Daniel R., 2006. "Bundling as an optimal selling mechanism for a multiple-good monopolist," Journal of Economic Theory, Elsevier, vol. 127(1), pages 1-35, March.
    17. Bekiros, Stelios D., 2010. "Heterogeneous trading strategies with adaptive fuzzy Actor-Critic reinforcement learning: A behavioral approach," Journal of Economic Dynamics and Control, Elsevier, vol. 34(6), pages 1153-1170, June.
    18. Dominique Guegan & Peter Martey Addo & Bertrand Hassani, 2018. "Credit Risk Analysis Using Machine and Deep Learning Models," Post-Print halshs-01835164, HAL.
    19. Dominique Guegan, 2018. "Credit Risk Analysis Using machine and Deep Learning Models," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01889154, HAL.
    20. Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
    21. Peter Martey Addo & Dominique Guegan & Bertrand Hassani, 2018. "Credit Risk Analysis using Machine and Deep Learning models," Post-Print halshs-01719983, HAL.
    22. Nicky J. Welton & Howard H. Z. Thom, 2015. "Value of Information," Medical Decision Making, , vol. 35(5), pages 564-566, July.
    23. Peter Martey Addo & Dominique Guégan & Bertrand Hassani, 2018. "Credit Risk Analysis using Machine and Deep learning models," Documents de travail du Centre d'Economie de la Sorbonne 18003, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    24. Yifeng Guo & Xingyu Fu & Yuyan Shi & Mingwen Liu, 2018. "Robust Log-Optimal Strategy with Reinforcement Learning," Papers 1805.00205, arXiv.org.
    25. David Silver & Aja Huang & Chris J. Maddison & Arthur Guez & Laurent Sifre & George van den Driessche & Julian Schrittwieser & Ioannis Antonoglou & Veda Panneershelvam & Marc Lanctot & Sander Dieleman, 2016. "Mastering the game of Go with deep neural networks and tree search," Nature, Nature, vol. 529(7587), pages 484-489, January.
    26. Peter Martey Addo & Dominique Guegan & Bertrand Hassani, 2018. "Credit Risk Analysis Using Machine and Deep Learning Models," Risks, MDPI, vol. 6(2), pages 1-20, April.
    27. J. B. Heaton & N. G. Polson & J. H. Witte, 2017. "Deep learning for finance: deep portfolios," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(1), pages 3-12, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fatemehsadat Mirshafiee & Emad Shahbazi & Mohadeseh Safi & Rituraj Rituraj, 2023. "Predicting Power and Hydrogen Generation of a Renewable Energy Converter Utilizing Data-Driven Methods: A Sustainable Smart Grid Case Study," Energies, MDPI, vol. 16(1), pages 1-20, January.
    2. Brini, Alessio & Tedeschi, Gabriele & Tantari, Daniele, 2023. "Reinforcement learning policy recommendation for interbank network stability," Journal of Financial Stability, Elsevier, vol. 67(C).
    3. Jan Niederreiter, 2023. "Broadening Economics in the Era of Artificial Intelligence and Experimental Evidence," Italian Economic Journal: A Continuation of Rivista Italiana degli Economisti and Giornale degli Economisti, Springer;Società Italiana degli Economisti (Italian Economic Association), vol. 9(1), pages 265-294, March.
    4. Ben Hambly & Renyuan Xu & Huining Yang, 2023. "Recent advances in reinforcement learning in finance," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 437-503, July.
    5. Tian Zhu & Wei Zhu, 2022. "Quantitative Trading through Random Perturbation Q-Network with Nonlinear Transaction Costs," Stats, MDPI, vol. 5(2), pages 1-15, June.
    6. Dimitrios Vamvakas & Panagiotis Michailidis & Christos Korkas & Elias Kosmatopoulos, 2023. "Review and Evaluation of Reinforcement Learning Frameworks on Smart Grid Applications," Energies, MDPI, vol. 16(14), pages 1-38, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amir Mosavi & Pedram Ghamisi & Yaser Faghan & Puhong Duan, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Papers 2004.01509, arXiv.org.
    2. Keerthana Sivamayil & Elakkiya Rajasekar & Belqasem Aljafari & Srete Nikolovski & Subramaniyaswamy Vairavasundaram & Indragandhi Vairavasundaram, 2023. "A Systematic Study on Reinforcement Learning Based Applications," Energies, MDPI, vol. 16(3), pages 1-23, February.
    3. Kolesnikova, A. & Yang, Y. & Lessmann, S. & Ma, T. & Sung, M.-C. & Johnson, J.E.V., 2019. "Can Deep Learning Predict Risky Retail Investors? A Case Study in Financial Risk Behavior Forecasting," IRTG 1792 Discussion Papers 2019-023, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    4. Kim, A. & Yang, Y. & Lessmann, S. & Ma, T. & Sung, M.-C. & Johnson, J.E.V., 2020. "Can deep learning predict risky retail investors? A case study in financial risk behavior forecasting," European Journal of Operational Research, Elsevier, vol. 283(1), pages 217-234.
    5. Dan Wang & Zhi Chen & Ionut Florescu, 2021. "A Sparsity Algorithm with Applications to Corporate Credit Rating," Papers 2107.10306, arXiv.org.
    6. Roy Cerqueti & Francesca Pampurini & Annagiulia Pezzola & Anna Grazia Quaranta, 2022. "Dangerous liasons and hot customers for banks," Review of Quantitative Finance and Accounting, Springer, vol. 59(1), pages 65-89, July.
    7. Anastasios Petropoulos & Vasilis Siakoulis & Evaggelos Stavroulakis & Aristotelis Klamargias, 2019. "A robust machine learning approach for credit risk analysis of large loan level datasets using deep learning and extreme gradient boosting," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Are post-crisis statistical initiatives completed?, volume 49, Bank for International Settlements.
    8. Anastasios Petropoulos & Vasilis Siakoulis & Evaggelos Stavroulakis & Aristotelis Klamargias, 2019. "A robust machine learning approach for credit risk analysis of large loan-level datasets using deep learning and extreme gradient boosting," IFC Bulletins chapters, in: Bank for International Settlements (ed.), The use of big data analytics and artificial intelligence in central banking, volume 50, Bank for International Settlements.
    9. Nenad Milojević & Srdjan Redzepagic, 2021. "Prospects of Artificial Intelligence and Machine Learning Application in Banking Risk Management," Journal of Central Banking Theory and Practice, Central bank of Montenegro, vol. 10(3), pages 41-57.
    10. Irving Fisher Committee, 2019. "The use of big data analytics and artificial intelligence in central banking," IFC Bulletins, Bank for International Settlements, number 50, July.
    11. Yaseen Ghulam & Kamini Dhruva & Sana Naseem & Sophie Hill, 2018. "The Interaction of Borrower and Loan Characteristics in Predicting Risks of Subprime Automobile Loans," Risks, MDPI, vol. 6(3), pages 1-21, September.
    12. Li-Chen Cheng & Wei-Ting Lu & Benjamin Yeo, 2023. "Predicting abnormal trading behavior from internet rumor propagation: a machine learning approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-23, December.
    13. Roman P. Bulyga & Alexey A. Sitnov & Liudmila V. Kashirskaya & Irina V. Safonova, 2020. "Transparency of credit institutions," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 7(4), pages 3158-3172, June.
    14. Revathi Bhuvaneswari & Antonio Segalini, 2020. "Determining Secondary Attributes for Credit Evaluation in P2P Lending," Papers 2006.13921, arXiv.org.
    15. Parisa Golbayani & Ionuc{t} Florescu & Rupak Chatterjee, 2020. "A comparative study of forecasting Corporate Credit Ratings using Neural Networks, Support Vector Machines, and Decision Trees," Papers 2007.06617, arXiv.org.
    16. K. S. Naik, 2021. "Predicting Credit Risk for Unsecured Lending: A Machine Learning Approach," Papers 2110.02206, arXiv.org.
    17. Xu Chen & Chunhong Liu & Changchun Gao & Yao Jiang, 2021. "Mechanism Underlying the Formation of Virtual Agglomeration of Creative Industries: Theoretical Analysis and Empirical Research," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    18. Ștefan Ionescu & Nora Chiriță & Ionuț Nica & Camelia Delcea, 2023. "An Analysis of Residual Financial Contagion in Romania’s Banking Market for Mortgage Loans," Sustainability, MDPI, vol. 15(15), pages 1-32, August.
    19. Chen, Shunqin & Guo, Zhengfeng & Zhao, Xinlei, 2021. "Predicting mortgage early delinquency with machine learning methods," European Journal of Operational Research, Elsevier, vol. 290(1), pages 358-372.
    20. Golbayani, Parisa & Florescu, Ionuţ & Chatterjee, Rupak, 2020. "A comparative study of forecasting corporate credit ratings using neural networks, support vector machines, and decision trees," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:10:p:1640-:d:417900. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.