IDEAS home Printed from https://ideas.repec.org/a/gam/jstats/v5y2022i2p33-560d836031.html
   My bibliography  Save this article

Quantitative Trading through Random Perturbation Q-Network with Nonlinear Transaction Costs

Author

Listed:
  • Tian Zhu

    (Department of Applied Mathematics and Statistics, State University of New York at Stony Brook, Stony Brook, NY 11794, USA)

  • Wei Zhu

    (Department of Applied Mathematics and Statistics, State University of New York at Stony Brook, Stony Brook, NY 11794, USA)

Abstract

In recent years, reinforcement learning (RL) has seen increasing applications in the financial industry, especially in quantitative trading and portfolio optimization when the focus is on the long-term reward rather than short-term profit. Sequential decision making and Markov decision processes are rather suited for this type of application. Through trial and error based on historical data, an agent can learn the characteristics of the market and evolve an algorithm to maximize the cumulative returns. In this work, we propose a novel RL trading algorithm utilizing random perturbation of the Q-network and account for the more realistic nonlinear transaction costs. In summary, we first design a new near-quadratic transaction cost function considering the slippage. Next, we develop a convolutional deep Q-learning network (CDQN) with multiple price input based on this cost functions. We further propose a random perturbation (rp) method to modify the learning network to solve the instability issue intrinsic to the deep Q-learning network. Finally, we use this newly developed CDQN-rp algorithm to make trading decisions based on the daily stock prices of Apple (AAPL), Meta (FB), and Bitcoin (BTC) and demonstrate its strengths over other quantitative trading methods.

Suggested Citation

  • Tian Zhu & Wei Zhu, 2022. "Quantitative Trading through Random Perturbation Q-Network with Nonlinear Transaction Costs," Stats, MDPI, vol. 5(2), pages 1-15, June.
  • Handle: RePEc:gam:jstats:v:5:y:2022:i:2:p:33-560:d:836031
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-905X/5/2/33/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-905X/5/2/33/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pierre Chen & Edmond Lezmi & Thierry Roncalli & Jiali Xu, 2020. "A Note on Portfolio Optimization with Quadratic Transaction Costs," Papers 2001.01612, arXiv.org.
    2. Courtney J Spoerer & Tim C Kietzmann & Johannes Mehrer & Ian Charest & Nikolaus Kriegeskorte, 2020. "Recurrent neural networks can explain flexible trading of speed and accuracy in biological vision," PLOS Computational Biology, Public Library of Science, vol. 16(10), pages 1-27, October.
    3. Yingchao Zhong & Chang Wang & Lu Wang, 2021. "Survival Augmented Patient Preference Incorporated Reinforcement Learning to Evaluate Tailoring Variables for Personalized Healthcare," Stats, MDPI, vol. 4(4), pages 1-17, September.
    4. Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
    5. Amir Mosavi & Pedram Ghamisi & Yaser Faghan & Puhong Duan, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Papers 2004.01509, arXiv.org.
    6. Shuo Sun & Rundong Wang & Bo An, 2021. "Reinforcement Learning for Quantitative Trading," Papers 2109.13851, arXiv.org.
    7. Mosavi, Amir & Faghan, Yaser & Ghamisi, Pedram & Duan, Puhong & Ardabili, Sina Faizollahzadeh & Hassan, Salwana & Band, Shahab S., 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," OSF Preprints jrc58, Center for Open Science.
    8. Amirhosein Mosavi & Yaser Faghan & Pedram Ghamisi & Puhong Duan & Sina Faizollahzadeh Ardabili & Ely Salwana & Shahab S. Band, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Mathematics, MDPI, vol. 8(10), pages 1-42, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brini, Alessio & Tedeschi, Gabriele & Tantari, Daniele, 2023. "Reinforcement learning policy recommendation for interbank network stability," Journal of Financial Stability, Elsevier, vol. 67(C).
    2. Dimitrios Vamvakas & Panagiotis Michailidis & Christos Korkas & Elias Kosmatopoulos, 2023. "Review and Evaluation of Reinforcement Learning Frameworks on Smart Grid Applications," Energies, MDPI, vol. 16(14), pages 1-38, July.
    3. Ben Hambly & Renyuan Xu & Huining Yang, 2023. "Recent advances in reinforcement learning in finance," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 437-503, July.
    4. Ben Hambly & Renyuan Xu & Huining Yang, 2021. "Recent Advances in Reinforcement Learning in Finance," Papers 2112.04553, arXiv.org, revised Feb 2023.
    5. Adrian Millea, 2021. "Deep Reinforcement Learning for Trading—A Critical Survey," Data, MDPI, vol. 6(11), pages 1-25, November.
    6. Jan Niederreiter, 2023. "Broadening Economics in the Era of Artificial Intelligence and Experimental Evidence," Italian Economic Journal: A Continuation of Rivista Italiana degli Economisti and Giornale degli Economisti, Springer;Società Italiana degli Economisti (Italian Economic Association), vol. 9(1), pages 265-294, March.
    7. Bruno Gašperov & Stjepan Begušić & Petra Posedel Šimović & Zvonko Kostanjčar, 2021. "Reinforcement Learning Approaches to Optimal Market Making," Mathematics, MDPI, vol. 9(21), pages 1-22, October.
    8. Fatemehsadat Mirshafiee & Emad Shahbazi & Mohadeseh Safi & Rituraj Rituraj, 2023. "Predicting Power and Hydrogen Generation of a Renewable Energy Converter Utilizing Data-Driven Methods: A Sustainable Smart Grid Case Study," Energies, MDPI, vol. 16(1), pages 1-20, January.
    9. Charl Maree & Christian W. Omlin, 2022. "Balancing Profit, Risk, and Sustainability for Portfolio Management," Papers 2207.02134, arXiv.org.
    10. Mei-Li Shen & Cheng-Feng Lee & Hsiou-Hsiang Liu & Po-Yin Chang & Cheng-Hong Yang, 2021. "An Effective Hybrid Approach for Forecasting Currency Exchange Rates," Sustainability, MDPI, vol. 13(5), pages 1-29, March.
    11. Valentin Kuleto & Milena Ilić & Mihail Dumangiu & Marko Ranković & Oliva M. D. Martins & Dan Păun & Larisa Mihoreanu, 2021. "Exploring Opportunities and Challenges of Artificial Intelligence and Machine Learning in Higher Education Institutions," Sustainability, MDPI, vol. 13(18), pages 1-16, September.
    12. Chien-Liang Chiu & Paoyu Huang & Min-Yuh Day & Yensen Ni & Yuhsin Chen, 2024. "Mastery of “Monthly Effects”: Big Data Insights into Contrarian Strategies for DJI 30 and NDX 100 Stocks over a Two-Decade Period," Mathematics, MDPI, vol. 12(2), pages 1-22, January.
    13. Petr Suler & Zuzana Rowland & Tomas Krulicky, 2021. "Evaluation of the Accuracy of Machine Learning Predictions of the Czech Republic’s Exports to the China," JRFM, MDPI, vol. 14(2), pages 1-30, February.
    14. Zechu Li & Xiao-Yang Liu & Jiahao Zheng & Zhaoran Wang & Anwar Walid & Jian Guo, 2021. "FinRL-Podracer: High Performance and Scalable Deep Reinforcement Learning for Quantitative Finance," Papers 2111.05188, arXiv.org.
    15. Rui (Aruhan) Shi, 2021. "Learning from Zero: How to Make Consumption-Saving Decisions in a Stochastic Environment with an AI Algorithm," CESifo Working Paper Series 9255, CESifo.
    16. Rui & Shi, 2021. "Learning from zero: how to make consumption-saving decisions in a stochastic environment with an AI algorithm," Papers 2105.10099, arXiv.org, revised Feb 2022.
    17. Callum Rhys Tilbury, 2022. "Reinforcement Learning for Economic Policy: A New Frontier?," Papers 2206.08781, arXiv.org, revised Feb 2023.
    18. Reilly Pickard & Yuri Lawryshyn, 2023. "Deep Reinforcement Learning for Dynamic Stock Option Hedging: A Review," Mathematics, MDPI, vol. 11(24), pages 1-19, December.
    19. Amir Masoud Rahmani & Efat Yousefpoor & Mohammad Sadegh Yousefpoor & Zahid Mehmood & Amir Haider & Mehdi Hosseinzadeh & Rizwan Ali Naqvi, 2021. "Machine Learning (ML) in Medicine: Review, Applications, and Challenges," Mathematics, MDPI, vol. 9(22), pages 1-52, November.
    20. Tulika Saha & Sriparna Saha & Pushpak Bhattacharyya, 2020. "Towards sentiment aided dialogue policy learning for multi-intent conversations using hierarchical reinforcement learning," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-28, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:5:y:2022:i:2:p:33-560:d:836031. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.