IDEAS home Printed from https://ideas.repec.org/a/spr/infosf/v22y2020i5d10.1007_s10796-020-10031-6.html
   My bibliography  Save this article

Bankruptcy Prediction Using Deep Learning Approach Based on Borderline SMOTE

Author

Listed:
  • Salima Smiti

    (University of Manouba)

  • Makram Soui

    (Saudi Electronic University, Arabie Saoudite)

Abstract

Imbalanced classification on bankruptcy prediction is considered as one of the most important topics in financial institutions. In this context, various statistical and artificial intelligence methods have been proposed. Recently, deep learning algorithms are experiencing a resurgence of interest, and are widely used to build a prediction and classification models. To this end, we propose a novel deep learning-based approach called BSM-SAES. This approach combines Borderline Synthetic Minority oversampling technique (BSM) and Stacked AutoEncoder (SAE) based on the Softmax classifier. The aim is to develop an accurate and reliable bankruptcy prediction model which includes the features extraction process. To assess the classification performance of our proposed model, k- nearest neighbor, decision tree, support vector machine, and artificial neural network, C5.0 that are machine learning methods, are applied. We evaluate our proposed approach on the Polish imbalanced datasets. The obtained results confirm the efficiency of our proposed model compared to other machine learning models regarding predicting and classifying the financial status of a firm.

Suggested Citation

  • Salima Smiti & Makram Soui, 2020. "Bankruptcy Prediction Using Deep Learning Approach Based on Borderline SMOTE," Information Systems Frontiers, Springer, vol. 22(5), pages 1067-1083, October.
  • Handle: RePEc:spr:infosf:v:22:y:2020:i:5:d:10.1007_s10796-020-10031-6
    DOI: 10.1007/s10796-020-10031-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10796-020-10031-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10796-020-10031-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arvind Shrivastava & Kuldeep Kumar & Nitin Kumar, 2018. "Business Distress Prediction Using Bayesian Logistic Model for Indian Firms," Risks, MDPI, vol. 6(4), pages 1-15, October.
    2. Peter Martey Addo & Dominique Guegan & Bertrand Hassani, 2018. "Credit Risk Analysis using Machine and Deep learning models," Working Papers 2018:08, Department of Economics, University of Venice "Ca' Foscari".
    3. Peter Martey Addo & Dominique Guegan & Bertrand Hassani, 2018. "Credit Risk Analysis using Machine and Deep Learning models," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01719983, HAL.
    4. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    5. Akkoç, Soner, 2012. "An empirical comparison of conventional techniques, neural networks and the three stage hybrid Adaptive Neuro Fuzzy Inference System (ANFIS) model for credit scoring analysis: The case of Turkish cred," European Journal of Operational Research, Elsevier, vol. 222(1), pages 168-178.
    6. Renato de Oliveira Brito & Luiz Síveres & Célio da Cunha, 2018. "Participative Management and Socio-Environmental Sustainability: a Study of Public Schools of Sobral, CE, Brazil," European Journal of Multidisciplinary Studies Articles, Revistia Research and Publishing, vol. 3, January -.
    7. Chi Xie & Changqing Luo & Xiang Yu, 2011. "Financial distress prediction based on SVM and MDA methods: the case of Chinese listed companies," Quality & Quantity: International Journal of Methodology, Springer, vol. 45(3), pages 671-686, April.
    8. Richard L. Constand & Rassoul Yazdipour, 2011. "Firm Failure Prediction Models: A Critique and a Review of Recent Developments," Springer Books, in: Advances in Entrepreneurial Finance, chapter 0, pages 185-204, Springer.
    9. McKee, Thomas E. & Lensberg, Terje, 2002. "Genetic programming and rough sets: A hybrid approach to bankruptcy classification," European Journal of Operational Research, Elsevier, vol. 138(2), pages 436-451, April.
    10. Dominique Guegan & Peter Martey Addo & Bertrand Hassani, 2018. "Credit Risk Analysis Using Machine and Deep Learning Models," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01835164, HAL.
    11. Dominique Guegan, 2018. "Credit Risk Analysis Using machine and Deep Learning Models," Post-Print halshs-01889154, HAL.
    12. Rassoul Yazdipour, 2011. "Advances in Entrepreneurial Finance," Springer Books, Springer, number 978-1-4419-7527-0, June.
    13. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    14. Dominique Guegan & Peter Martey Addo & Bertrand Hassani, 2018. "Credit Risk Analysis Using Machine and Deep Learning Models," Post-Print halshs-01835164, HAL.
    15. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    16. Zmijewski, Me, 1984. "Methodological Issues Related To The Estimation Of Financial Distress Prediction Models," Journal of Accounting Research, Wiley Blackwell, vol. 22, pages 59-82.
    17. Dominique Guegan, 2018. "Credit Risk Analysis Using machine and Deep Learning Models," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01889154, HAL.
    18. Peter Martey Addo & Dominique Guegan & Bertrand Hassani, 2018. "Credit Risk Analysis using Machine and Deep Learning models," Post-Print halshs-01719983, HAL.
    19. Joonhyuck Lee & Dongsik Jang & Sangsung Park, 2017. "Deep Learning-Based Corporate Performance Prediction Model Considering Technical Capability," Sustainability, MDPI, vol. 9(6), pages 1-12, May.
    20. Adrian Gepp & Kuldeep Kumar & Sukanto Bhattacharya, 2010. "Business failure prediction using decision trees," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(6), pages 536-555.
    21. Peter Martey Addo & Dominique Guégan & Bertrand Hassani, 2018. "Credit Risk Analysis using Machine and Deep learning models," Documents de travail du Centre d'Economie de la Sorbonne 18003, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    22. Mai, Feng & Tian, Shaonan & Lee, Chihoon & Ma, Ling, 2019. "Deep learning models for bankruptcy prediction using textual disclosures," European Journal of Operational Research, Elsevier, vol. 274(2), pages 743-758.
    23. Daniel Vaughan-Whitehead, 2014. "Introduction," Economia & lavoro, Carocci editore, issue 2, pages 5-8.
    24. Sanchis, A. & Segovia, M.J. & Gil, J.A. & Heras, A. & Vilar, J.L., 2007. "Rough Sets and the role of the monetary policy in financial stability (macroeconomic problem) and the prediction of insolvency in insurance sector (microeconomic problem)," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1554-1573, September.
    25. Peter Martey Addo & Dominique Guegan & Bertrand Hassani, 2018. "Credit Risk Analysis Using Machine and Deep Learning Models," Risks, MDPI, vol. 6(2), pages 1-20, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lydia Bouzar-Benlabiod & Stuart H. Rubin, 2020. "Heuristic Acquisition for Data Science," Information Systems Frontiers, Springer, vol. 22(5), pages 1001-1007, October.
    2. Yoon Sang Lee & Chulhwan Chris Bang, 2022. "Framework for the Classification of Imbalanced Structured Data Using Under-sampling and Convolutional Neural Network," Information Systems Frontiers, Springer, vol. 24(6), pages 1795-1809, December.
    3. Christian Kauten & Ashish Gupta & Xiao Qin & Glenn Richey, 2022. "Predicting Blood Donors Using Machine Learning Techniques," Information Systems Frontiers, Springer, vol. 24(5), pages 1547-1562, October.
    4. Yu Zhao & Huaming Du & Qing Li & Fuzhen Zhuang & Ji Liu & Gang Kou, 2022. "A Comprehensive Survey on Enterprise Financial Risk Analysis from Big Data Perspective," Papers 2211.14997, arXiv.org, revised May 2023.
    5. Zhou, Ying & Shen, Long & Ballester, Laura, 2023. "A two-stage credit scoring model based on random forest: Evidence from Chinese small firms," International Review of Financial Analysis, Elsevier, vol. 89(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anastasios Petropoulos & Vasilis Siakoulis & Evaggelos Stavroulakis & Aristotelis Klamargias, 2019. "A robust machine learning approach for credit risk analysis of large loan level datasets using deep learning and extreme gradient boosting," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Are post-crisis statistical initiatives completed?, volume 49, Bank for International Settlements.
    2. Anastasios Petropoulos & Vasilis Siakoulis & Evaggelos Stavroulakis & Aristotelis Klamargias, 2019. "A robust machine learning approach for credit risk analysis of large loan-level datasets using deep learning and extreme gradient boosting," IFC Bulletins chapters, in: Bank for International Settlements (ed.), The use of big data analytics and artificial intelligence in central banking, volume 50, Bank for International Settlements.
    3. Irving Fisher Committee, 2019. "The use of big data analytics and artificial intelligence in central banking," IFC Bulletins, Bank for International Settlements, number 50, July.
    4. Parisa Golbayani & Ionuc{t} Florescu & Rupak Chatterjee, 2020. "A comparative study of forecasting Corporate Credit Ratings using Neural Networks, Support Vector Machines, and Decision Trees," Papers 2007.06617, arXiv.org.
    5. Kolesnikova, A. & Yang, Y. & Lessmann, S. & Ma, T. & Sung, M.-C. & Johnson, J.E.V., 2019. "Can Deep Learning Predict Risky Retail Investors? A Case Study in Financial Risk Behavior Forecasting," IRTG 1792 Discussion Papers 2019-023, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    6. Golbayani, Parisa & Florescu, Ionuţ & Chatterjee, Rupak, 2020. "A comparative study of forecasting corporate credit ratings using neural networks, support vector machines, and decision trees," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    7. Gunnarsson, Björn Rafn & vanden Broucke, Seppe & Baesens, Bart & Óskarsdóttir, María & Lemahieu, Wilfried, 2021. "Deep learning for credit scoring: Do or don’t?," European Journal of Operational Research, Elsevier, vol. 295(1), pages 292-305.
    8. Hossein Hassani & Xu Huang & Emmanuel Silva & Mansi Ghodsi, 2020. "Deep Learning and Implementations in Banking," Annals of Data Science, Springer, vol. 7(3), pages 433-446, September.
    9. Kim, A. & Yang, Y. & Lessmann, S. & Ma, T. & Sung, M.-C. & Johnson, J.E.V., 2020. "Can deep learning predict risky retail investors? A case study in financial risk behavior forecasting," European Journal of Operational Research, Elsevier, vol. 283(1), pages 217-234.
    10. Lars Ole Hjelkrem & Petter Eilif de Lange, 2023. "Explaining Deep Learning Models for Credit Scoring with SHAP: A Case Study Using Open Banking Data," JRFM, MDPI, vol. 16(4), pages 1-19, April.
    11. Dan Wang & Zhi Chen & Ionut Florescu, 2021. "A Sparsity Algorithm with Applications to Corporate Credit Rating," Papers 2107.10306, arXiv.org.
    12. Roy Cerqueti & Francesca Pampurini & Annagiulia Pezzola & Anna Grazia Quaranta, 2022. "Dangerous liasons and hot customers for banks," Review of Quantitative Finance and Accounting, Springer, vol. 59(1), pages 65-89, July.
    13. Keerthana Sivamayil & Elakkiya Rajasekar & Belqasem Aljafari & Srete Nikolovski & Subramaniyaswamy Vairavasundaram & Indragandhi Vairavasundaram, 2023. "A Systematic Study on Reinforcement Learning Based Applications," Energies, MDPI, vol. 16(3), pages 1-23, February.
    14. Amirhosein Mosavi & Yaser Faghan & Pedram Ghamisi & Puhong Duan & Sina Faizollahzadeh Ardabili & Ely Salwana & Shahab S. Band, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Mathematics, MDPI, vol. 8(10), pages 1-42, September.
    15. Nenad Milojević & Srdjan Redzepagic, 2021. "Prospects of Artificial Intelligence and Machine Learning Application in Banking Risk Management," Journal of Central Banking Theory and Practice, Central bank of Montenegro, vol. 10(3), pages 41-57.
    16. Yaseen Ghulam & Kamini Dhruva & Sana Naseem & Sophie Hill, 2018. "The Interaction of Borrower and Loan Characteristics in Predicting Risks of Subprime Automobile Loans," Risks, MDPI, vol. 6(3), pages 1-21, September.
    17. Li-Chen Cheng & Wei-Ting Lu & Benjamin Yeo, 2023. "Predicting abnormal trading behavior from internet rumor propagation: a machine learning approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-23, December.
    18. Roman P. Bulyga & Alexey A. Sitnov & Liudmila V. Kashirskaya & Irina V. Safonova, 2020. "Transparency of credit institutions," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 7(4), pages 3158-3172, June.
    19. Revathi Bhuvaneswari & Antonio Segalini, 2020. "Determining Secondary Attributes for Credit Evaluation in P2P Lending," Papers 2006.13921, arXiv.org.
    20. K. S. Naik, 2021. "Predicting Credit Risk for Unsecured Lending: A Machine Learning Approach," Papers 2110.02206, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infosf:v:22:y:2020:i:5:d:10.1007_s10796-020-10031-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.