IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v348y2025i1d10.1007_s10479-023-05286-6.html
   My bibliography  Save this article

Machine learning vs deep learning in stock market investment: an international evidence

Author

Listed:
  • Jing Hao

    (Capital University of Economics and Business)

  • Feng He

    (Capital University of Economics and Business
    Loboratory for Fintech and Risk Management)

  • Feng Ma

    (Southwest Jiaotong University)

  • Shibo Zhang

    (Tianjin University)

  • Xiaotao Zhang

    (Tianjin University)

Abstract

Machine learning and deep learning are powerful tools for quantitative investment. To examine the effectiveness of the models in different markets, this paper applies random forest and DNN models to forecast stock prices and construct statistical arbitrage strategies in five stock markets, including mainland China, the United States, the United Kingdom, Canada and Japan. Each model is applied to the price of major stock indices constituting stocks in these markets from 2005 to 2020 to construct a long-short portfolio with 20 selected stocks by the model. The results show that the a particular model obtains significantly different profits in different markets, among which DNN has the best performance, especially in the Chinese stock market. We find that DNN models generally perform better than other machine learning models in all markets.

Suggested Citation

  • Jing Hao & Feng He & Feng Ma & Shibo Zhang & Xiaotao Zhang, 2025. "Machine learning vs deep learning in stock market investment: an international evidence," Annals of Operations Research, Springer, vol. 348(1), pages 93-115, May.
  • Handle: RePEc:spr:annopr:v:348:y:2025:i:1:d:10.1007_s10479-023-05286-6
    DOI: 10.1007/s10479-023-05286-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-023-05286-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-023-05286-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:348:y:2025:i:1:d:10.1007_s10479-023-05286-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.