IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1708.02786.html
   My bibliography  Save this paper

Sequential testing for structural stability in approximate factor models

Author

Listed:
  • Matteo Barigozzi
  • Lorenzo Trapani

Abstract

We develop a monitoring procedure to detect changes in a large approximate factor model. Letting $r$ be the number of common factors, we base our statistics on the fact that the $\left( r+1\right) $-th eigenvalue of the sample covariance matrix is bounded under the null of no change, whereas it becomes spiked under changes. Given that sample eigenvalues cannot be estimated consistently under the null, we randomise the test statistic, obtaining a sequence of \textit{i.i.d} statistics, which are used for the monitoring scheme. Numerical evidence shows a very small probability of false detections, and tight detection times of change-points.

Suggested Citation

  • Matteo Barigozzi & Lorenzo Trapani, 2017. "Sequential testing for structural stability in approximate factor models," Papers 1708.02786, arXiv.org, revised Mar 2020.
  • Handle: RePEc:arx:papers:1708.02786
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1708.02786
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Trapani, Lorenzo, 2016. "Testing for (in)finite moments," Journal of Econometrics, Elsevier, vol. 191(1), pages 57-68.
    2. Horváth, Lajos & Kokoszka, Piotr & Steinebach, Josef, 2007. "On sequential detection of parameter changes in linear regression," Statistics & Probability Letters, Elsevier, vol. 77(9), pages 885-895, May.
    3. Johnstone, Iain M. & Lu, Arthur Yu, 2009. "On Consistency and Sparsity for Principal Components Analysis in High Dimensions," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 682-693.
    4. Bates, Brandon J. & Plagborg-Møller, Mikkel & Stock, James H. & Watson, Mark W., 2013. "Consistent factor estimation in dynamic factor models with structural instability," Journal of Econometrics, Elsevier, vol. 177(2), pages 289-304.
    5. Lorenzo Trapani, 2018. "A Randomized Sequential Procedure to Determine the Number of Factors," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1341-1349, July.
    6. Forni, Mario & Lippi, Marco, 2001. "The Generalized Dynamic Factor Model: Representation Theory," Econometric Theory, Cambridge University Press, vol. 17(6), pages 1113-1141, December.
    7. Forni, Mario & Hallin, Marc & Lippi, Marco & Zaffaroni, Paolo, 2017. "Dynamic factor models with infinite-dimensional factor space: Asymptotic analysis," Journal of Econometrics, Elsevier, vol. 199(1), pages 74-92.
    8. Andreou, Elena & Ghysels, Eric, 2006. "Monitoring disruptions in financial markets," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 77-124.
    9. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    10. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    11. Horváth, Lajos & Trapani, Lorenzo, 2019. "Testing for randomness in a random coefficient autoregression model," Journal of Econometrics, Elsevier, vol. 209(2), pages 338-352.
    12. Corradi, Valentina & Swanson, Norman R., 2006. "The effect of data transformation on common cycle, cointegration, and unit root tests: Monte Carlo results and a simple test," Journal of Econometrics, Elsevier, vol. 132(1), pages 195-229, May.
    13. Bandi, Federico M. & Corradi, Valentina, 2014. "Nonparametric Nonstationarity Tests," Econometric Theory, Cambridge University Press, vol. 30(1), pages 127-149, February.
    14. Forni, Mario & Giannone, Domenico & Lippi, Marco & Reichlin, Lucrezia, 2009. "Opening The Black Box: Structural Factor Models With Large Cross Sections," Econometric Theory, Cambridge University Press, vol. 25(5), pages 1319-1347, October.
    15. Chen, Liang & Dolado, Juan J. & Gonzalo, Jesús, 2014. "Detecting big structural breaks in large factor models," Journal of Econometrics, Elsevier, vol. 180(1), pages 30-48.
    16. Breitung, Jörg & Eickmeier, Sandra, 2011. "Testing for structural breaks in dynamic factor models," Journal of Econometrics, Elsevier, vol. 163(1), pages 71-84, July.
    17. Xu Cheng & Zhipeng Liao & Frank Schorfheide, 2016. "Shrinkage Estimation of High-Dimensional Factor Models with Structural Instabilities," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 83(4), pages 1511-1543.
    18. Bai, Zhidong & Yao, Jianfeng, 2012. "On sample eigenvalues in a generalized spiked population model," Journal of Multivariate Analysis, Elsevier, vol. 106(C), pages 167-177.
    19. Chamberlain, Gary & Rothschild, Michael, 1983. "Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets," Econometrica, Econometric Society, vol. 51(5), pages 1281-1304, September.
    20. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    21. De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2008. "Forecasting using a large number of predictors: Is Bayesian shrinkage a valid alternative to principal components?," Journal of Econometrics, Elsevier, vol. 146(2), pages 318-328, October.
    22. Haeran Cho & Piotr Fryzlewicz, 2015. "Multiple-change-point detection for high dimensional time series via sparsified binary segmentation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(2), pages 475-507, March.
    23. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    24. Massacci, Daniele, 2017. "Least squares estimation of large dimensional threshold factor models," Journal of Econometrics, Elsevier, vol. 197(1), pages 101-129.
    25. Alexei Onatski, 2010. "Determining the Number of Factors from Empirical Distribution of Eigenvalues," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1004-1016, November.
    26. Aue, Alexander & Hörmann, Siegfried & Horváth, Lajos & Hušková, Marie & Steinebach, Josef G., 2012. "Sequential Testing For The Stability Of High-Frequency Portfolio Betas," Econometric Theory, Cambridge University Press, vol. 28(4), pages 804-837, August.
    27. Han, Xu & Inoue, Atsushi, 2015. "Tests For Parameter Instability In Dynamic Factor Models," Econometric Theory, Cambridge University Press, vol. 31(5), pages 1117-1152, October.
    28. Cho, Haeran & Fryzlewicz, Piotr, 2015. "Multiple-change-point detection for high dimensional time series via sparsified binary segmentation," LSE Research Online Documents on Economics 57147, London School of Economics and Political Science, LSE Library.
    29. Yamamoto, Yohei & Tanaka, Shinya, 2015. "Testing for factor loading structural change under common breaks," Journal of Econometrics, Elsevier, vol. 189(1), pages 187-206.
    30. Seung C. Ahn & Alex R. Horenstein, 2013. "Eigenvalue Ratio Test for the Number of Factors," Econometrica, Econometric Society, vol. 81(3), pages 1203-1227, May.
    31. Bai, Jushan, 2004. "Estimating cross-section common stochastic trends in nonstationary panel data," Journal of Econometrics, Elsevier, vol. 122(1), pages 137-183, September.
    32. Jan J. J. Groen & George Kapetanios & Simon Price, 2013. "Multivariate Methods For Monitoring Structural Change," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(2), pages 250-274, March.
    33. Alexei Onatski & Marcelo Moreira J. & Marc Hallin, 2012. "Signal Detection in High Dmension: The Multispiked Case," Working Papers ECARES ECARES 2012-036, ULB -- Universite Libre de Bruxelles.
    34. Barigozzi, Matteo & Cho, Haeran & Fryzlewicz, Piotr, 2018. "Simultaneous multiple change-point and factor analysis for high-dimensional time series," Journal of Econometrics, Elsevier, vol. 206(1), pages 187-225.
    35. Chihwa Kao & Lorenzo Trapani & Giovanni Urga, 2012. "Testing for Instability in Covariance Structures," Center for Policy Research Working Papers 131, Center for Policy Research, Maxwell School, Syracuse University.
    36. Onatski, Alexei, 2012. "Asymptotics of the principal components estimator of large factor models with weakly influential factors," Journal of Econometrics, Elsevier, vol. 168(2), pages 244-258.
    37. Guang-hui Cai, 2006. "Chover-type laws of the iterated logarithm for weighted sums of ρ ∗ -mixing sequences," International Journal of Stochastic Analysis, Hindawi, vol. 2006, pages 1-7, April.
    38. Corradi, Valentina & Swanson, Norman R., 2014. "Testing for structural stability of factor augmented forecasting models," Journal of Econometrics, Elsevier, vol. 182(1), pages 100-118.
    39. Stock, James H. & Watson, Mark, 2011. "Dynamic Factor Models," Scholarly Articles 28469541, Harvard University Department of Economics.
    40. Lam, Clifford & Yao, Qiwei, 2012. "Factor modeling for high-dimensional time series: inference for the number of factors," LSE Research Online Documents on Economics 45684, London School of Economics and Political Science, LSE Library.
    41. Bai, Jushan, 2010. "Common breaks in means and variances for panel data," Journal of Econometrics, Elsevier, vol. 157(1), pages 78-92, July.
    42. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    43. Benaych-Georges, Florent & Nadakuditi, Raj Rao, 2012. "The singular values and vectors of low rank perturbations of large rectangular random matrices," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 120-135.
    44. Chu, Chia-Shang James & Stinchcombe, Maxwell & White, Halbert, 1996. "Monitoring Structural Change," Econometrica, Econometric Society, vol. 64(5), pages 1045-1065, September.
    45. Alessi, Lucia & Barigozzi, Matteo & Capasso, Marco, 2010. "Improved penalization for determining the number of factors in approximate factor models," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1806-1813, December.
    46. Clifford Lam & Qiwei Yao & Neil Bathia, 2011. "Estimation of latent factors for high-dimensional time series," Biometrika, Biometrika Trust, vol. 98(4), pages 901-918.
    47. Baltagi, Badi H. & Kao, Chihwa & Wang, Fa, 2017. "Identification and estimation of a large factor model with structural instability," Journal of Econometrics, Elsevier, vol. 197(1), pages 87-100.
    48. Lam, Clifford & Yao, Qiwei & Bathia, Neil, 2011. "Estimation of latent factors for high-dimensional time series," LSE Research Online Documents on Economics 31549, London School of Economics and Political Science, LSE Library.
    49. Aue, Alexander & Horváth, Lajos, 2004. "Delay time in sequential detection of change," Statistics & Probability Letters, Elsevier, vol. 67(3), pages 221-231, April.
    50. Jia Li & Viktor Todorov & George Tauchen & Huidi Lin, 2019. "Rank Tests at Jump Events," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(2), pages 312-321, April.
    51. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    52. Hallin, Marc & Liska, Roman, 2011. "Dynamic factors in the presence of blocks," Journal of Econometrics, Elsevier, vol. 163(1), pages 29-41, July.
    53. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matteo Barigozzi & Daniele Massacci, 2022. "Modelling Large Dimensional Datasets with Markov Switching Factor Models," Papers 2210.09828, arXiv.org, revised Dec 2023.
    2. Xin-Bing Kong & Yong-Xin Liu & Long Yu & Peng Zhao, 2022. "Matrix Quantile Factor Model," Papers 2208.08693, arXiv.org, revised May 2023.
    3. Matteo Barigozzi & Marc Hallin, 2023. "Dynamic Factor Models: a Genealogy," Working Papers ECARES 2023-15, ULB -- Universite Libre de Bruxelles.
    4. Lorenzo Trapani & Emily Whitehouse, 2020. "Sequential monitoring for cointegrating regressions," Papers 2003.12182, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matteo Barigozzi & Marc Hallin, 2023. "Dynamic Factor Models: a Genealogy," Papers 2310.17278, arXiv.org, revised Jan 2024.
    2. Barigozzi, Matteo & Cho, Haeran & Fryzlewicz, Piotr, 2018. "Simultaneous multiple change-point and factor analysis for high-dimensional time series," Journal of Econometrics, Elsevier, vol. 206(1), pages 187-225.
    3. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," PSE Working Papers halshs-02262202, HAL.
    4. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers halshs-02262202, HAL.
    5. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    6. Ma, Chenchen & Tu, Yundong, 2023. "Group fused Lasso for large factor models with multiple structural breaks," Journal of Econometrics, Elsevier, vol. 233(1), pages 132-154.
    7. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    8. Jianqing Fan & Kunpeng Li & Yuan Liao, 2020. "Recent Developments on Factor Models and its Applications in Econometric Learning," Papers 2009.10103, arXiv.org.
    9. Ma, Shujie & Su, Liangjun, 2018. "Estimation of large dimensional factor models with an unknown number of breaks," Journal of Econometrics, Elsevier, vol. 207(1), pages 1-29.
    10. Massacci, Daniele, 2017. "Least squares estimation of large dimensional threshold factor models," Journal of Econometrics, Elsevier, vol. 197(1), pages 101-129.
    11. Bai, Jushan & Han, Xu & Shi, Yutang, 2020. "Estimation and inference of change points in high-dimensional factor models," Journal of Econometrics, Elsevier, vol. 219(1), pages 66-100.
    12. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    13. Duan, Jiangtao & Bai, Jushan & Han, Xu, 2023. "Quasi-maximum likelihood estimation of break point in high-dimensional factor models," Journal of Econometrics, Elsevier, vol. 233(1), pages 209-236.
    14. Matteo Barigozzi & Daniele Massacci, 2022. "Modelling Large Dimensional Datasets with Markov Switching Factor Models," Papers 2210.09828, arXiv.org, revised Dec 2023.
    15. Baltagi, Badi H. & Kao, Chihwa & Wang, Fa, 2021. "Estimating and testing high dimensional factor models with multiple structural changes," Journal of Econometrics, Elsevier, vol. 220(2), pages 349-365.
    16. Matteo Barigozzi, 2023. "Quasi Maximum Likelihood Estimation of High-Dimensional Factor Models: A Critical Review," Papers 2303.11777, arXiv.org, revised Dec 2023.
    17. Bai, Jushan & Duan, Jiangtao & Han, Xu, 2024. "The likelihood ratio test for structural changes in factor models," Journal of Econometrics, Elsevier, vol. 238(2).
    18. Chou, Ray Yeutien & Yen, Tso-Jung & Yen, Yu-Min, 2020. "Macroeconomic forecasting using approximate factor models with outliers," International Journal of Forecasting, Elsevier, vol. 36(2), pages 267-291.
    19. Aït-Sahalia, Yacine & Xiu, Dacheng, 2017. "Using principal component analysis to estimate a high dimensional factor model with high-frequency data," Journal of Econometrics, Elsevier, vol. 201(2), pages 384-399.
    20. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1708.02786. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.