IDEAS home Printed from https://ideas.repec.org/p/urv/wpaper/2072-290743.html
   My bibliography  Save this paper

Frequency-Domain Estimation as an Alternative to Pre-Filtering External Cycles in Structural VAR Analysis

Author

Listed:
  • Lovcha, Yuliya
  • Pérez Laborda, Alejandro

Abstract

This paper shows that the frequency domain estimation of VAR models over a frequency band can be a good alternative to pre-filtering the data when a low-frequency cycle contaminates some of the variables. As stressed in the econometric literature, pre-filtering destroys the low-frequency range of the spectrum, leading to substantial bias in the responses of the variables to structural shocks. Our analysis shows that if the estimation is carried out in the frequency domain, but employing a sensible band to exclude (enough) contaminated frequencies from the likelihood, the resulting VAR estimates and the impulse responses to structural shocks do not present significant bias. This result is robust to several specifications of the external cycle and data lengths. An empirical application studying the effect of technology shocks on hours worked is provided to illustrate the results. Keywords: Impulse-response, filtering, identification, technology shocks. JEL Classification: C32, C51, E32, E37

Suggested Citation

  • Lovcha, Yuliya & Pérez Laborda, Alejandro, 2016. "Frequency-Domain Estimation as an Alternative to Pre-Filtering External Cycles in Structural VAR Analysis," Working Papers 2072/290743, Universitat Rovira i Virgili, Department of Economics.
  • Handle: RePEc:urv:wpaper:2072/290743
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/2072/290743
    Download Restriction: no

    References listed on IDEAS

    as
    1. Juan F. Rubio-Ramírez & Daniel F. Waggoner & Tao Zha, 2010. "Structural Vector Autoregressions: Theory of Identification and Algorithms for Inference," Review of Economic Studies, Oxford University Press, vol. 77(2), pages 665-696.
    2. Neville Francis & Michael T. Owyang & Jennifer E. Roush & Riccardo DiCecio, 2014. "A Flexible Finite-Horizon Alternative to Long-Run Restrictions with an Application to Technology Shocks," The Review of Economics and Statistics, MIT Press, vol. 96(4), pages 638-647, October.
    3. Christiano, Lawrence J. & Vigfusson, Robert J., 2003. "Maximum likelihood in the frequency domain: the importance of time-to-plan," Journal of Monetary Economics, Elsevier, vol. 50(4), pages 789-815, May.
    4. Neville Francis & Valerie A. Ramey, 2009. "Measures of per Capita Hours and Their Implications for the Technology-Hours Debate," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(6), pages 1071-1097, September.
    5. Nikolay Gospodinov & Alex Maynard & Elena Pesavento, 2011. "Sensitivity of Impulse Responses to Small Low-Frequency Comovements: Reconciling the Evidence on the Effects of Technology Shocks," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(4), pages 455-467, October.
    6. Lovcha, Yuliya & Pérez Laborda, Àlex, 2013. "Hours worked - Productivity puzzle: identification in fractional integration settings," Working Papers 2072/211796, Universitat Rovira i Virgili, Department of Economics.
    7. Lovcha, Yuliya & Pérez Laborda, Àlex, 2016. "The Variance-Frequency Decomposition as an Instrument for VAR Identification: an Application to Technology Shocks," Working Papers 2072/261537, Universitat Rovira i Virgili, Department of Economics.
    8. Harald Uhlig, 2004. "Do Technology Shocks Lead to a Fall in Total Hours Worked?," Journal of the European Economic Association, MIT Press, vol. 2(2-3), pages 361-371, 04/05.
    9. King, Robert G. & Rebelo, Sergio T., 1993. "Low frequency filtering and real business cycles," Journal of Economic Dynamics and Control, Elsevier, vol. 17(1-2), pages 207-231.
    10. Fabio Canova & David Lopez-Salido & Claudio Michelacci, 2010. "The effects of technology shocks on hours and output: a robustness analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(5), pages 755-773.
    11. Jeremy Berkowitz & Francis X. Diebold, 1998. "Bootstrapping Multivariate Spectra," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 664-666, November.
    12. Fernald, John G., 2007. "Trend breaks, long-run restrictions, and contractionary technology improvements," Journal of Monetary Economics, Elsevier, vol. 54(8), pages 2467-2485, November.
    13. Shimotsu, Katsumi, 2007. "Gaussian semiparametric estimation of multivariate fractionally integrated processes," Journal of Econometrics, Elsevier, vol. 137(2), pages 277-310, April.
    14. Frank S. Nielsen, 2011. "Local Whittle estimation of multi‐variate fractionally integrated processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(3), pages 317-335, May.
    15. Cogley, Timothy & Nason, James M., 1995. "Effects of the Hodrick-Prescott filter on trend and difference stationary time series Implications for business cycle research," Journal of Economic Dynamics and Control, Elsevier, vol. 19(1-2), pages 253-278.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Previsió econòmica; Models economètrics; Cicles econòmics; 33 - Economia;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:urv:wpaper:2072/290743. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ariadna Casals). General contact details of provider: http://edirc.repec.org/data/deurves.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.