IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Gaussian Semiparametric Estimation of Multivariate Fractionally Integrated Processes

  • Katsumi Shimotsu

    ()

    (Queen's University)

This paper analyzes the semiparametric estimation of multivariate long-range dependent processes. The class of spectral densities considered is motivated by and includes those of multivariate fractionally integrated processes. The paper establishes the consistency of the multivariate Gaussian semiparametric estimator (GSE), which has not been shown in other work, and the asymptotic normality of the GSE estimator. The proposed GSE estimator is shown to have a smaller limiting variance than the two-step GSE estimator studied by Lobato (1999). Gaussianity is not assumed in the asymptotic theory. Some simulations confirm the relevance of the asymptotic results in samples of the size used in practical work.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://qed.econ.queensu.ca/working_papers/papers/qed_wp_1062.pdf
File Function: First version 2006
Download Restriction: no

Paper provided by Queen's University, Department of Economics in its series Working Papers with number 1062.

as
in new window

Length: 39 pages
Date of creation: Feb 2006
Date of revision:
Publication status: Forthcoming in Journal of Econometrics
Handle: RePEc:qed:wpaper:1062
Contact details of provider: Postal: Kingston, Ontario, K7L 3N6
Phone: (613) 533-2250
Fax: (613) 533-6668
Web page: http://qed.econ.queensu.ca/
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Katsumi Shimotsu & Peter C.B. Phillips, 2002. "Exact Local Whittle Estimation of Fractional Integration," Economics Discussion Papers 535, University of Essex, Department of Economics.
  2. Brunetti, Celso & Gilbert, Christopher L., 2000. "Bivariate FIGARCH and fractional cointegration," Journal of Empirical Finance, Elsevier, vol. 7(5), pages 509-530, December.
  3. Marc Henry & Paolo Zaffaroni, 2002. "The long range dependence paradigm for macroeconomics and finance," Discussion Papers 0102-19, Columbia University, Department of Economics.
  4. Lobato, Ignacio N & Velasco, Carlos, 2000. "Long Memory in Stock-Market Trading Volume," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(4), pages 410-27, October.
  5. Lobato, Ignacio N & Robinson, Peter M, 1998. "A Nonparametric Test for I(0)," Review of Economic Studies, Wiley Blackwell, vol. 65(3), pages 475-95, July.
  6. Katsumi Shimotsu & Peter C.B. Phillips, 2000. "Local Whittle Estimation in Nonstationary and Unit Root Cases," Cowles Foundation Discussion Papers 1266, Cowles Foundation for Research in Economics, Yale University, revised Sep 2003.
  7. Bollerslev, Tim & Wright, Jonathan H., 2000. "Semiparametric estimation of long-memory volatility dependencies: The role of high-frequency data," Journal of Econometrics, Elsevier, vol. 98(1), pages 81-106, September.
  8. Lobato, Ignacio N., 1999. "A semiparametric two-step estimator in a multivariate long memory model," Journal of Econometrics, Elsevier, vol. 90(1), pages 129-153, May.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:qed:wpaper:1062. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mark Babcock)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.