IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/1266.html
   My bibliography  Save this paper

Local Whittle Estimation in Nonstationary and Unit Root Cases

Author

Abstract

Asymptotic properties of the local Whittle estimator in the nonstationary case (d > 1/2) are explored. For 1/2 1 and when the process has a linear trend, the estimator is shown to be inconsistent and to converge in probability to unity.

Suggested Citation

  • Katsumi Shimotsu & Peter C.B. Phillips, 2000. "Local Whittle Estimation in Nonstationary and Unit Root Cases," Cowles Foundation Discussion Papers 1266, Cowles Foundation for Research in Economics, Yale University, revised Sep 2003.
  • Handle: RePEc:cwl:cwldpp:1266
    Note: CFP 1098
    as

    Download full text from publisher

    File URL: http://cowles.yale.edu/sites/default/files/files/pub/d12/d1266.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Dean Corbae & Sam Ouliaris & Peter C. B. Phillips, 2002. "Band Spectral Regression with Trending Data," Econometrica, Econometric Society, vol. 70(3), pages 1067-1109, May.
    2. Marinucci, D & Robinson, Peter, 2001. "Narrow-band analysis of nonstationary processes," LSE Research Online Documents on Economics 2015, London School of Economics and Political Science, LSE Library.
    3. Marinucci, D. & Robinson, Peter M., 2001. "Narrow-band analysis of nonstationary processes," LSE Research Online Documents on Economics 303, London School of Economics and Political Science, LSE Library.
    4. Peter C.B. Phillips, 1999. "Discrete Fourier Transforms of Fractional Processes," Cowles Foundation Discussion Papers 1243, Cowles Foundation for Research in Economics, Yale University.
    5. Shimotsu, Katsumi & Phillips, Peter C B, 2002. "Exact Local Whittle Estimation of Fractional Integration," Economics Discussion Papers 8838, University of Essex, Department of Economics.
    6. Chang Sik Kim & Peter C.B. Phillips, 2006. "Log Periodogram Regression: The Nonstationary Case," Cowles Foundation Discussion Papers 1587, Cowles Foundation for Research in Economics, Yale University.
    7. Marinucci, D. & Robinson, P. M., 2000. "Weak convergence of multivariate fractional processes," Stochastic Processes and their Applications, Elsevier, vol. 86(1), pages 103-120, March.
    8. Schotman, Peter C & van Dijk, Herman K, 1991. "On Bayesian Routes to Unit Roots," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 6(4), pages 387-401, Oct.-Dec..
    9. Donald W.K. Andrews & Yixiao Sun, 2001. "Local Polynomial Whittle Estimation of Long-range Dependence," Cowles Foundation Discussion Papers 1293, Cowles Foundation for Research in Economics, Yale University.
    10. Nelson, Charles R. & Plosser, Charles I., 1982. "Trends and random walks in macroeconmic time series : Some evidence and implications," Journal of Monetary Economics, Elsevier, vol. 10(2), pages 139-162.
    11. D Marinucci & Peter M Robinson, 2001. "Narrow-Band Analysis of Nonstationary Processes," STICERD - Econometrics Paper Series 421, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    12. Phillips, Peter C.B., 2007. "Unit root log periodogram regression," Journal of Econometrics, Elsevier, vol. 138(1), pages 104-124, May.
    13. Carlos Velasco, 2003. "Gaussian Semi-parametric Estimation of Fractional Cointegration," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(3), pages 345-378, May.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Discrete Fourier transform; fractional Brownian motion; fractional integration; long memory; nonstationarity; semiparametric estimation; trend; Whittle likelihood; unit root;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1266. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Matthew Regan). General contact details of provider: http://edirc.repec.org/data/cowleus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.