IDEAS home Printed from
   My bibliography  Save this article

Gaussian Semi-parametric Estimation of Fractional Cointegration


  • Carlos Velasco


We analyse consistent estimation of the memory parameters of a nonstationary fractionally cointegrated vector time series. Assuming that the cointegrating relationship has substantially less memory than the observed series, we show that a multi-variate Gaussian semi-parametric estimate, based on initial consistent estimates and possibly tapered observations, is asymptotically normal. The estimates of the memory parameters can rely either on original (for stationary errors) or on differenced residuals (for nonstationary errors) assuming only a convergence rate for a preliminary slope estimate. If this rate is fast enough, semi-parametric memory estimates are not affected by the use of residuals and retain the same asymptotic distribution as if the true cointegrating relationship were known. Only local conditions on the spectral densities around zero frequency for linear processes are assumed. We concentrate on a bivariate system but discuss multi-variate generalizations and show the performance of the estimates with simulated and real data. Copyright 2003 Blackwell Publishing Ltd.

Suggested Citation

  • Carlos Velasco, 2003. "Gaussian Semi-parametric Estimation of Fractional Cointegration," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(3), pages 345-378, May.
  • Handle: RePEc:bla:jtsera:v:24:y:2003:i:3:p:345-378

    Download full text from publisher

    File URL:
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:24:y:2003:i:3:p:345-378. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.