IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/1163.html
   My bibliography  Save this paper

Band Spectral Regression with Trending Data

Author

Listed:

Abstract

Band spectral regression with deterministic and stochastic trends is considered. It is shown that conventional trend removal by regression in the time domain prior to band spectral regression leads to biased and inconsistent estimates of the parameters in a model with frequency dependent coefficients. Time domain and frequency domain procedures for dealing with this problem are examined. Trend removal in the frequency domain produces unbiased estimates and is recommended. An asymptotic theory is developed and the two cases of stationary data and cointegrated nonstationary data are compared. Efficient band spectral regression estimators and associated inferential methods are provided for models with deterministic and stochastic trends. Some supporting Monte Carlo evidence is presented. An empirical application to the present value model of stock prices is discussed. After removing trends in the frequency domain, we show that, while stock prices and dividends have significant coherence at low frequencies, transitory fluctuations in dividends (i.e., less than 3 years) do not have significant coherence with stock price movements.

Suggested Citation

  • Dean Corbae & Sam Ouliaris & Peter C.B. Phillips, 1997. "Band Spectral Regression with Trending Data," Cowles Foundation Discussion Papers 1163, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:1163 Note: CFDP 1039.
    as

    Download full text from publisher

    File URL: http://cowles.yale.edu/sites/default/files/files/pub/d11/d1163.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Peter C. B. Phillips & Bruce E. Hansen, 1990. "Statistical Inference in Instrumental Variables Regression with I(1) Processes," Review of Economic Studies, Oxford University Press, vol. 57(1), pages 99-125.
    2. Peter C.B. Phillips & Chin Chin Lee, 1996. "Efficiency Gains from Quasi-Differencing Under Nonstationarity," Cowles Foundation Discussion Papers 1134, Cowles Foundation for Research in Economics, Yale University.
    3. Peter C.B. Phillips, 1988. "Spectral Regression for Cointegrated Time Series," Cowles Foundation Discussion Papers 872, Cowles Foundation for Research in Economics, Yale University.
    4. Peter C.B. Phillips & Victor Solo, 1989. "Asymptotics for Linear Processes," Cowles Foundation Discussion Papers 932, Cowles Foundation for Research in Economics, Yale University.
    5. Durlauf, Steven N & Phillips, Peter C B, 1988. "Trends versus Random Walks in Time Series Analysis," Econometrica, Econometric Society, vol. 56(6), pages 1333-1354, November.
    6. Xiao, Zhijie & Phillips, Peter C. B., 1998. "Higher-order approximations for frequency domain time series regression," Journal of Econometrics, Elsevier, vol. 86(2), pages 297-336, June.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Band spectral regression; deterministic and stochastic trends; nonstationary time series; integrated process; present value model of stock prices;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1163. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Matthew Regan). General contact details of provider: http://edirc.repec.org/data/cowleus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.