IDEAS home Printed from https://ideas.repec.org/a/ecm/emetrp/v72y2004i2p467-522.html

GMM Estimation of Autoregressive Roots Near Unity with Panel Data

Author

Listed:
  • Hyungsik Roger Moon
  • Peter C. B. Phillips

Abstract

This paper investigates a generalized method of moments (GMM) approach to the estimation of autoregressive roots near unity with panel data and incidental deterministic trends. Such models arise in empirical econometric studies of firm size and in dynamic panel data modeling with weak instruments. The two moment conditions in the GMM approach are obtained by constructing bias corrections to the score functions under OLS and GLS detrending, respectively. It is shown that the moment condition under GLS detrending corresponds to taking the projected score on the Bhattacharya basis, linking the approach to recent work on projected score methods for models with infinite numbers of nuisance parameters (Waterman and Lindsay (1998)). Assuming that the localizing parameter takes a nonpositive value, we establish consistency of the GMM estimator and find its limiting distribution. A notable new finding is that the GMM estimator has convergence rate $n^{1/6}$ n 1 / 6 , slower than $\sqrt{n}$ n , when the true localizing parameter is zero (i.e., when there is a panel unit root) and the deterministic trends in the panel are linear. These results, which rely on boundary point asymptotics, point to the continued difficulty of distinguishing unit roots from local alternatives, even when there is an infinity of additional data. Copyright The Econometric Society 2004.

Suggested Citation

  • Hyungsik Roger Moon & Peter C. B. Phillips, 2004. "GMM Estimation of Autoregressive Roots Near Unity with Panel Data," Econometrica, Econometric Society, vol. 72(2), pages 467-522, March.
  • Handle: RePEc:ecm:emetrp:v:72:y:2004:i:2:p:467-522
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1468-0262.2004.00498.x
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or

    for a different version of it.

    Other versions of this item:

    More about this item

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:emetrp:v:72:y:2004:i:2:p:467-522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.