IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

GMM Estimation of Dynamic Panel Data Models with Persistent Data

  • Hugo Kruiniger

    (Queen Mary, University of London)

This paper considers GMM based estimation and testing procedures for two versions of the AR(1) model with Fixed Effects, henceforth abbreviated as ARFE(1): the conditional ARFE(1) model, and the inclusive ARFE(1) model, which contains the stationary ARFE(1) models and the ARFE(1) model with a unit root. First, the paper presents a two-step Optimal Linear GMM (OLGMM) estimator for the inclusive model which is asymptotically equivalent to the optimal nonlinear GMM estimator of Ahn and Schmidt (1997). Then the paper examines the properties of the GMM estimators for both versions of the model when the data are persistent. Among other things, we find that the OLGMM estimator is superefficient in the unit root case. Furthermore, under stationarity the covariances of the instruments of the Arellano-Bond estimator and the first differences of the dependent variable are not weak. We also derive new approximations to the finite sample distributions of the Arellano-Bond estimator (for both versions of the model), the Arellano-Bover estimator, and the System estimator. We employ local-to-zero asymptotics (cf. Staiger and Stock (1997)) for the Arellano-Bond estimator for the conditional model, because its instruments are weak in this context, and we employ local-to-unity asymptotics, which is developed in this paper, for the estimators for the stationary model. The new approximations agree well with the Monte Carlo evidence in terms of bias and variance. Finally, various GMM based unit root tests against stationary and conditional alternatives are proposed.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.econ.qmul.ac.uk/papers/doc/wp428.pdf
Download Restriction: no

Paper provided by Queen Mary University of London, School of Economics and Finance in its series Working Papers with number 428.

as
in new window

Length:
Date of creation: Dec 2000
Date of revision:
Handle: RePEc:qmw:qmwecw:wp428
Contact details of provider: Postal: London E1 4NS
Phone: +44 (0) 20 7882 5096
Fax: +44 (0) 20 8983 3580
Web page: http://www.econ.qmul.ac.uk

More information through EDIRC

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:qmw:qmwecw:wp428. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Nick Vriend)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.