IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Business Cycle Analysis and VARMA models

  • Christian Kascha
  • Karel Mertens

An important question in empirical macroeconomics is whether structural vector autoregressions (SVARs) can reliably discriminate between competing DSGE models. Several recent papers have suggested that one reason SVARs may fail to do so is because they are finite-order approximations to infinite-order processes. In this context, we investigate the performance of models that do not suffer from this type of misspecification. We estimate VARMA and state space models using simulated data from a standard economic model and compare true with estimated impulse responses. For our examples, we find that one cannot gain much by using algorithms based on a VARMA representation. However, algorithms that are based on the state space representation do outperform VARs. Unfortunately, these alternative estimates remain heavily biased and very imprecise. The findings of this paper suggest that the reason SVARs perform weakly in these types of simulation studies is not because they are simple finite-order approximations. Given the properties of the generated data, their failure seems almost entirely due to the use of small samples.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://cadmus.iue.it/dspace/bitstream/1814/6450/1/ECO-2006-37.pdf
File Function: main text
Download Restriction: no

Paper provided by European University Institute in its series Economics Working Papers with number ECO2006/37.

as
in new window

Length:
Date of creation: 2006
Date of revision:
Handle: RePEc:eui:euiwps:eco2006/37
Contact details of provider: Postal: Badia Fiesolana, Via dei Roccettini, 9, 50014 San Domenico di Fiesole (FI) Italy
Phone: +39-055-4685.982
Fax: +39-055-4685.902
Web page: http://www.eui.eu/ECO/

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Lawrence J. Christiano & Martin Eichenbaum & Robert Vigfusson, 2006. "Assessing Structural VARs," NBER Working Papers 12353, National Bureau of Economic Research, Inc.
    • Lawrence J. Christiano & Martin Eichenbaum & Robert Vigfusson, 2007. "Assessing Structural VARs," NBER Chapters, in: NBER Macroeconomics Annual 2006, Volume 21, pages 1-106 National Bureau of Economic Research, Inc.
  2. Francis, Neville & Ramey, Valerie A., 2005. "Is the technology-driven real business cycle hypothesis dead? Shocks and aggregate fluctuations revisited," Journal of Monetary Economics, Elsevier, vol. 52(8), pages 1379-1399, November.
  3. Galí, Jordi, 1996. "Technology, Employment, and the Business Cycle: Do Technology Shocks Explain Aggregate Fluctuations?," CEPR Discussion Papers 1499, C.E.P.R. Discussion Papers.
  4. V. V. Chari & Patrick J. Kehoe & Ellen R. McGrattan, 2005. "A critique of structural VARs using real business cycle theory," Working Papers 631, Federal Reserve Bank of Minneapolis.
  5. Barbara Rossi & Elena Pesavento, 2006. "Small-sample confidence intervals for multivariate impulse response functions at long horizons," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(8), pages 1135-1155.
  6. Patrick J. Kehoe, 2006. "How to Advance Theory with Structural VARs: Use the Sims-Cogley-Nason Approach," NBER Working Papers 12575, National Bureau of Economic Research, Inc.
  7. Jesús Fernández-Villaverde & Juan F. Rubio-Ramirez & Thomas J. Sargent & Mark Watson, 2006. "A,B,C's (and D's)'s for Understanding VARS," Levine's Bibliography 321307000000000646, UCLA Department of Economics.
  8. Bauer, Dietmar, 2005. "Estimating Linear Dynamical Systems Using Subspace Methods," Econometric Theory, Cambridge University Press, vol. 21(01), pages 181-211, February.
  9. Lawrence J. Christiano & Martin Eichenbaum & Robert Vigfusson, 2003. "What happens after a technology shock?," International Finance Discussion Papers 768, Board of Governors of the Federal Reserve System (U.S.).
  10. Melard, Guy & Roy, Roch & Saidi, Abdessamad, 2006. "Exact maximum likelihood estimation of structured or unit root multivariate time series models," Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 2958-2986, July.
  11. Timothy Cogley & James M. Nason, 1993. "Output dynamics in real business cycle models," Working Papers in Applied Economic Theory 93-10, Federal Reserve Bank of San Francisco.
  12. Edward C. Prescott, 1986. "Theory ahead of business cycle measurement," Quarterly Review, Federal Reserve Bank of Minneapolis, issue Fall, pages 9-22.
  13. Elmar Mertens, 2008. "Are Spectral Estimators Useful for Implementing Long-Run Restrictions in SVARs?," Working Papers 08.01, Swiss National Bank, Study Center Gerzensee.
  14. Christopher J. Erceg & Luca Guerrieri, 2004. "Can Long-Run Restrictions Identify Technology Shocks?," Computing in Economics and Finance 2004 3, Society for Computational Economics.
  15. Bauer, Dietmar & Wagner, Martin, 2002. "Estimating cointegrated systems using subspace algorithms," Journal of Econometrics, Elsevier, vol. 111(1), pages 47-84, November.
  16. Chari, V.V. & Kehoe, Patrick J. & McGrattan, Ellen R., 2008. "Are structural VARs with long-run restrictions useful in developing business cycle theory?," Journal of Monetary Economics, Elsevier, vol. 55(8), pages 1337-1352, November.
  17. Ansley, Craig F. & Newbold, Paul, 1980. "Finite sample properties of estimators for autoregressive moving average models," Journal of Econometrics, Elsevier, vol. 13(2), pages 159-183, June.
  18. Federico Ravenna, 2006. "Vector autoregressions and reduced form representations of DSGE models," Banco de Espa�a Working Papers 0619, Banco de Espa�a.
  19. Robert G. King & Charles I. Plosser & James H. Stock & Mark W. Watson, 1991. "Stochastic trends and economic fluctuations," Working Paper Series, Macroeconomic Issues 91-4, Federal Reserve Bank of Chicago.
  20. Ellen R. McGrattan, 2010. "Measurement with minimal theory," Quarterly Review, Federal Reserve Bank of Minneapolis, issue July, pages 2-13.
  21. Dietmar Bauer, 2005. "Comparing the CCA Subspace Method to Pseudo Maximum Likelihood Methods in the case of No Exogenous Inputs," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(5), pages 631-668, 09.
  22. Granger, Clive W. J. & Jeon, Yongil, 2004. "Thick modeling," Economic Modelling, Elsevier, vol. 21(2), pages 323-343, March.
  23. Olivier Jean Blanchard & Danny Quah, 1988. "The Dynamic Effects of Aggregate Demand and Supply Disturbances," NBER Working Papers 2737, National Bureau of Economic Research, Inc.
  24. Ireland, Peter N., 2001. "Technology shocks and the business cycle: On empirical investigation," Journal of Economic Dynamics and Control, Elsevier, vol. 25(5), pages 703-719, May.
  25. Kilian, Lutz, 2001. "Impulse Response Analysis in Vector Autoregressions with Unknown Lag Order," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(3), pages 161-79, April.
  26. King, Robert G. & Plosser, Charles I. & Rebelo, Sergio T., 1988. "Production, growth and business cycles : I. The basic neoclassical model," Journal of Monetary Economics, Elsevier, vol. 21(2-3), pages 195-232.
  27. Guy Melard & Roch Roy & Abdessamad Saidi, 2006. "Exact maximum likelihood estimation of structured or unit root multivariate time series models," ULB Institutional Repository 2013/13754, ULB -- Universite Libre de Bruxelles.
  28. Davidson, James E. H., 1981. "Problems with the estimation of moving average processes," Journal of Econometrics, Elsevier, vol. 16(3), pages 295-310, August.
  29. Galí, Jordi & Rabanal, Pau, 2004. "Technology Shocks and Aggregate Fluctuations: How Well Does the RBC Model Fit Post-War US Data?," CEPR Discussion Papers 4522, C.E.P.R. Discussion Papers.
  30. George Kapetanios, 2002. "A Note on an Iterative Least Squares Estimation Method for ARMA and VARMA Models," Working Papers 467, Queen Mary University of London, School of Economics and Finance.
  31. Cooley, Thomas F. & Dwyer, Mark, 1998. "Business cycle analysis without much theory A look at structural VARs," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 57-88.
  32. James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
  33. Jordi Gali & Pau Rabanal, 2004. "Technology Shocks and Aggregate Fluctuations: How Well Does the RBS Model Fit Postwar U.S. Data?," NBER Working Papers 10636, National Bureau of Economic Research, Inc.
  34. Kapetanios, George, 2003. "A note on an iterative least-squares estimation method for ARMA and VARMA models," Economics Letters, Elsevier, vol. 79(3), pages 305-312, June.
  35. Christopher A. Sims, 1989. "Models and their uses," Discussion Paper / Institute for Empirical Macroeconomics 11, Federal Reserve Bank of Minneapolis.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eui:euiwps:eco2006/37. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Rhoda Lane)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.