IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v32y2011i5p462-468.html
   My bibliography  Save this article

Forecasting linear dynamical systems using subspace methods

Author

Listed:
  • Alfredo García‐Hiernaux

Abstract

A new procedure to predict with subspace methods is presented in this paper. It is based on combining multiple forecasts obtained from setting a range of values for a speci c parameter that is typically xed by the user in the subspace methods literature. An algorithm to compute these predictions and to obtain a suitable number of combinations is provided. The procedure is illustrated by forecasting the German gross domestic product.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Alfredo García‐Hiernaux, 2011. "Forecasting linear dynamical systems using subspace methods," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(5), pages 462-468, September.
  • Handle: RePEc:bla:jtsera:v:32:y:2011:i:5:p:462-468
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bauer, Dietmar & Wagner, Martin, 2002. "Estimating cointegrated systems using subspace algorithms," Journal of Econometrics, Elsevier, vol. 111(1), pages 47-84, November.
    2. Kapetanios, George, 2004. "A note on modelling core inflation for the UK using a new dynamic factor estimation method and a large disaggregated price index dataset," Economics Letters, Elsevier, vol. 85(1), pages 63-69, October.
    3. Kascha, Christian & Mertens, Karel, 2009. "Business cycle analysis and VARMA models," Journal of Economic Dynamics and Control, Elsevier, vol. 33(2), pages 267-282, February.
    4. Christian Schumacher, 2007. "Forecasting German GDP using alternative factor models based on large datasets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(4), pages 271-302.
    5. Alfredo García-Hiernaux & José Casals & Miguel Jerez, 2012. "Estimating the system order by subspace methods," Computational Statistics, Springer, vol. 27(3), pages 411-425, September.
    6. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    7. Bauer, Dietmar, 2005. "Estimating Linear Dynamical Systems Using Subspace Methods," Econometric Theory, Cambridge University Press, vol. 21(01), pages 181-211, February.
    8. Dietmar Bauer, 2005. "Comparing the CCA Subspace Method to Pseudo Maximum Likelihood Methods in the case of No Exogenous Inputs," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(5), pages 631-668, September.
    9. Alfredo García Hiernaux & José Casals Carro & Miguel Jerez, 2005. "Fast estimation methods for time series models in state-space form," Documentos de Trabajo del ICAE 0504, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:32:y:2011:i:5:p:462-468. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.