IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Understanding the Effect of Technology Shocks in SVARs with Long-Run Restrictions

Listed author(s):
  • Chaudourne, Jeremy
  • Fève, Patrick

This paper studies the statistical properties of impulse response functions in structural vector autoregressions (SVARs) with a highly persistent variable as hours worked and long-run identifying restrictions. The highly persistent variable is specified as a nearly stationary persistent process. Such process appears particularly well suited to characterized the dynamics of hours worked because it implies a unit root in finite sample but is asymptotically stationary and persistent. This is typically the case for per capita hours worked which are included in SVARs. Theoretical results derived from this specification allow to explain most of the empirical findings from SVARs which include U.S. hours worked. Simulation experiments from an estimated DSGE model confirm theoretical results.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://idei.fr/sites/default/files/medias/doc/wp/2012/wp_idei_738.pdf
File Function: Full text
Download Restriction: no

Paper provided by Institut d'Économie Industrielle (IDEI), Toulouse in its series IDEI Working Papers with number 738.

as
in new window

Length:
Date of creation: Aug 2012
Handle: RePEc:ide:wpaper:26113
Contact details of provider: Postal:
Manufacture des Tabacs, Aile Jean-Jacques Laffont, 21 Allée de Brienne, 31000 TOULOUSE

Phone: +33 (0)5 61 12 85 89
Fax: + 33 (0)5 61 12 86 37
Web page: http://www.idei.fr/
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Blanchard, Olivier Jean & Quah, Danny, 1989. "The Dynamic Effects of Aggregate Demand and Supply Disturbances," American Economic Review, American Economic Association, vol. 79(4), pages 655-673, September.
  2. Miles S. Kimball & John G. Fernald & Susanto Basu, 2006. "Are Technology Improvements Contractionary?," American Economic Review, American Economic Association, vol. 96(5), pages 1418-1448, December.
  3. Pierre Perron & Serena Ng, 1996. "Useful Modifications to some Unit Root Tests with Dependent Errors and their Local Asymptotic Properties," Review of Economic Studies, Oxford University Press, vol. 63(3), pages 435-463.
  4. Hansen, Gary D., 1985. "Indivisible labor and the business cycle," Journal of Monetary Economics, Elsevier, vol. 16(3), pages 309-327, November.
  5. Jordi Gali, 1999. "Technology, Employment, and the Business Cycle: Do Technology Shocks Explain Aggregate Fluctuations?," American Economic Review, American Economic Association, vol. 89(1), pages 249-271, March.
  6. Lawrence J. Christiano & Martin Eichenbaum & Robert Vigfusson, 2007. "Assessing Structural VARs," NBER Chapters,in: NBER Macroeconomics Annual 2006, Volume 21, pages 1-106 National Bureau of Economic Research, Inc.
  7. Patrick Fève & Alain Guay, 2010. "Identification of Technology Shocks in Structural Vars," Economic Journal, Royal Economic Society, vol. 120(549), pages 1284-1318, December.
  8. Francis, Neville & Ramey, Valerie A., 2005. "Is the technology-driven real business cycle hypothesis dead? Shocks and aggregate fluctuations revisited," Journal of Monetary Economics, Elsevier, vol. 52(8), pages 1379-1399, November.
  9. Matthew Shapiro & Mark Watson, 1988. "Sources of Business Cycles Fluctuations," NBER Chapters,in: NBER Macroeconomics Annual 1988, Volume 3, pages 111-156 National Bureau of Economic Research, Inc.
  10. Christopher J. Erceg & Luca Guerrieri & Christopher Gust, 2005. "Can Long-Run Restrictions Identify Technology Shocks?," Journal of the European Economic Association, MIT Press, vol. 3(6), pages 1237-1278, December.
  11. Yongsung Chang & Taeyoung Doh & Frank Schorfheide, 2007. "Non-stationary Hours in a DSGE Model," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(6), pages 1357-1373, September.
  12. Ireland, Peter N., 2004. "A method for taking models to the data," Journal of Economic Dynamics and Control, Elsevier, vol. 28(6), pages 1205-1226, March.
  13. Gospodinov, Nikolay, 2010. "Inference in Nearly Nonstationary SVAR Models With Long-Run Identifying Restrictions," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 1-12.
  14. Lewis, Richard & Reinsel, Gregory C., 1985. "Prediction of multivariate time series by autoregressive model fitting," Journal of Multivariate Analysis, Elsevier, vol. 16(3), pages 393-411, June.
  15. Lawrence J. Christiano & Martin Eichenbaum & Charles L. Evans, 2005. "Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy," Journal of Political Economy, University of Chicago Press, vol. 113(1), pages 1-45, February.
  16. Neville Francis & Valerie A. Ramey, 2009. "Measures of per Capita Hours and Their Implications for the Technology-Hours Debate," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(6), pages 1071-1097, September.
  17. Nikolay Gospodinov & Alex Maynard & Elena Pesavento, 2011. "Sensitivity of Impulse Responses to Small Low-Frequency Comovements: Reconciling the Evidence on the Effects of Technology Shocks," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(4), pages 455-467, October.
  18. Jordi Gali Garreta & Pau Rabanal, 2004. "Technology Shocks and Aggregate Fluctuations; How Well Does the RBC Model Fit Postwar U.S. Data?," IMF Working Papers 04/234, International Monetary Fund.
  19. Pantula, Sastry G, 1991. "Asymptotic Distributions of Unit-Root Tests When the Process Is Nearly Stationary," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(1), pages 63-71, January.
  20. Serena Ng & Pierre Perron, 2001. "LAG Length Selection and the Construction of Unit Root Tests with Good Size and Power," Econometrica, Econometric Society, vol. 69(6), pages 1519-1554, November.
  21. Jordi Gali Garreta & Pau Rabanal, 2004. "Technology Shocks and Aggregate Fluctuations; How Well Does the RBC Model Fit Postwar U.S. Data?," IMF Working Papers 04/234, International Monetary Fund.
  22. John G. Fernald, 2012. "A quarterly, utilization-adjusted series on total factor productivity," Working Paper Series 2012-19, Federal Reserve Bank of San Francisco.
  23. Beaudry, Paul & Guay, Alain, 1996. "What do interest rates reveal about the functioning of real business cycle models?," Journal of Economic Dynamics and Control, Elsevier, vol. 20(9-10), pages 1661-1682.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ide:wpaper:26113. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.