IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v112y2016icp285-293.html
   My bibliography  Save this article

Small-scale biomass gasification CHP systems: Comparative performance assessment and monitoring experiences in South Tyrol (Italy)

Author

Listed:
  • Patuzzi, Francesco
  • Prando, Dario
  • Vakalis, Stergios
  • Rizzo, Andrea Maria
  • Chiaramonti, David
  • Tirler, Werner
  • Mimmo, Tanja
  • Gasparella, Andrea
  • Baratieri, Marco

Abstract

During the last years, there was an increasing interest in small-scale biomass gasification system for combined heat and power (CHP) generation in South-Tyrol (Italy). The large number of plants based on various technologies and installed in a rather small area allowed carrying out a comparative study on a representative set of small-scale gasification-based commercial CHP unit.

Suggested Citation

  • Patuzzi, Francesco & Prando, Dario & Vakalis, Stergios & Rizzo, Andrea Maria & Chiaramonti, David & Tirler, Werner & Mimmo, Tanja & Gasparella, Andrea & Baratieri, Marco, 2016. "Small-scale biomass gasification CHP systems: Comparative performance assessment and monitoring experiences in South Tyrol (Italy)," Energy, Elsevier, vol. 112(C), pages 285-293.
  • Handle: RePEc:eee:energy:v:112:y:2016:i:c:p:285-293
    DOI: 10.1016/j.energy.2016.06.077
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216308519
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.06.077?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shen, Yafei, 2015. "Chars as carbonaceous adsorbents/catalysts for tar elimination during biomass pyrolysis or gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 281-295.
    2. Lee, Uisung & Balu, Elango & Chung, J.N., 2013. "An experimental evaluation of an integrated biomass gasification and power generation system for distributed power applications," Applied Energy, Elsevier, vol. 101(C), pages 699-708.
    3. Rovas, Dimitrios & Zabaniotou, Anastasia, 2015. "Exergy analysis of a small gasification-ICE integrated system for CHP production fueled with Mediterranean agro-food processing wastes: The SMARt-CHP," Renewable Energy, Elsevier, vol. 83(C), pages 510-517.
    4. Zhou, Zhaoqiu & Yin, Xiuli & Xu, Jie & Ma, Longlong, 2012. "The development situation of biomass gasification power generation in China," Energy Policy, Elsevier, vol. 51(C), pages 52-57.
    5. Wang, Jiang-Jiang & Yang, Kun & Xu, Zi-Long & Fu, Chao, 2015. "Energy and exergy analyses of an integrated CCHP system with biomass air gasification," Applied Energy, Elsevier, vol. 142(C), pages 317-327.
    6. Anis, Samsudin & Zainal, Z.A., 2011. "Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2355-2377, June.
    7. Maraver, Daniel & Sin, Ana & Royo, Javier & Sebastián, Fernando, 2013. "Assessment of CCHP systems based on biomass combustion for small-scale applications through a review of the technology and analysis of energy efficiency parameters," Applied Energy, Elsevier, vol. 102(C), pages 1303-1313.
    8. Bhaduri, S. & Contino, F. & Jeanmart, H. & Breuer, E., 2015. "The effects of biomass syngas composition, moisture, tar loading and operating conditions on the combustion of a tar-tolerant HCCI (Homogeneous Charge Compression Ignition) engine," Energy, Elsevier, vol. 87(C), pages 289-302.
    9. Raman, P. & Ram, N.K., 2013. "Performance analysis of an internal combustion engine operated on producer gas, in comparison with the performance of the natural gas and diesel engines," Energy, Elsevier, vol. 63(C), pages 317-333.
    10. Mancarella, Pierluigi & Chicco, Gianfranco, 2008. "Assessment of the greenhouse gas emissions from cogeneration and trigeneration systems. Part II: Analysis techniques and application cases," Energy, Elsevier, vol. 33(3), pages 418-430.
    11. Salomón, Marianne & Savola, Tuula & Martin, Andrew & Fogelholm, Carl-Johan & Fransson, Torsten, 2011. "Small-scale biomass CHP plants in Sweden and Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4451-4465.
    12. Hernández, J.J. & Ballesteros, R. & Aranda, G., 2013. "Characterisation of tars from biomass gasification: Effect of the operating conditions," Energy, Elsevier, vol. 50(C), pages 333-342.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Korus, Agnieszka & Ravenni, Giulia & Loska, Krzysztof & Korus, Irena & Samson, Abby & Szlęk, Andrzej, 2021. "The importance of inherent inorganics and the surface area of wood char for its gasification reactivity and catalytic activity towards toluene conversion," Renewable Energy, Elsevier, vol. 173(C), pages 479-497.
    2. Cristina Moliner & Filippo Marchelli & Elisabetta Arato, 2020. "Current Status of Energy Production from Solid Biomass in North-West Italy," Energies, MDPI, vol. 13(17), pages 1-29, August.
    3. Rabbat, Christelle & Awad, Sary & Villot, Audrey & Rollet, Delphine & Andrès, Yves, 2022. "Sustainability of biomass-based insulation materials in buildings: Current status in France, end-of-life projections and energy recovery potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    4. Zhang, Jingxin & Kan, Xiang & Shen, Ye & Loh, Kai-Chee & Wang, Chi-Hwa & Dai, Yanjun & Tong, Yen Wah, 2018. "A hybrid biological and thermal waste-to-energy system with heat energy recovery and utilization for solid organic waste treatment," Energy, Elsevier, vol. 152(C), pages 214-222.
    5. Li, Xian & Shen, Ye & Kan, Xiang & Hardiman, Timothy Kurnia & Dai, Yanjun & Wang, Chi-Hwa, 2018. "Thermodynamic assessment of a solar/autothermal hybrid gasification CCHP system with an indirectly radiative reactor," Energy, Elsevier, vol. 142(C), pages 201-214.
    6. Patuzzi, Francesco & Basso, Daniele & Vakalis, Stergios & Antolini, Daniele & Piazzi, Stefano & Benedetti, Vittoria & Cordioli, Eleonora & Baratieri, Marco, 2021. "State-of-the-art of small-scale biomass gasification systems: An extensive and unique monitoring review," Energy, Elsevier, vol. 223(C).
    7. Sutar, Kailasnath B. & Kohli, Sangeeta & Ravi, M.R., 2017. "Design, development and testing of small downdraft gasifiers for domestic cookstoves," Energy, Elsevier, vol. 124(C), pages 447-460.
    8. Janajreh, Isam & Adeyemi, Idowu & Raza, Syed Shabbar & Ghenai, Chaouki, 2021. "A review of recent developments and future prospects in gasification systems and their modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    9. Chen, Wen-Lih & Huang, Chao-Wei & Li, Yueh-Heng & Kao, Chien-Chun & Cong, Huynh Thanh, 2020. "Biosyngas-fueled platinum reactor applied in micro combined heat and power system with a thermophotovoltaic array and stirling engine," Energy, Elsevier, vol. 194(C).
    10. Li, Xian & Kan, Xiang & Sun, Xiangyu & Zhao, Yao & Ge, Tianshu & Dai, Yanjun & Wang, Chi-Hwa, 2019. "Performance analysis of a biomass gasification-based CCHP system integrated with variable-effect LiBr-H2O absorption cooling and desiccant dehumidification," Energy, Elsevier, vol. 176(C), pages 961-979.
    11. Benedetti, Vittoria & Patuzzi, Francesco & Baratieri, Marco, 2018. "Characterization of char from biomass gasification and its similarities with activated carbon in adsorption applications," Applied Energy, Elsevier, vol. 227(C), pages 92-99.
    12. Montazerinejad, H. & Eicker, U., 2022. "Recent development of heat and power generation using renewable fuels: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    13. Franco Cotana & Gianluca Cavalaglio & Valentina Coccia & Alessandro Petrozzi, 2016. "Energy Opportunities from Lignocellulosic Biomass for a Biorefinery Case Study," Energies, MDPI, vol. 9(9), pages 1-10, September.
    14. Ravenni, G. & Elhami, O.H. & Ahrenfeldt, J. & Henriksen, U.B. & Neubauer, Y., 2019. "Adsorption and decomposition of tar model compounds over the surface of gasification char and active carbon within the temperature range 250–800 °C," Applied Energy, Elsevier, vol. 241(C), pages 139-151.
    15. Vakalis, Stergios & Moustakas, Konstantinos, 2019. "Modelling of advanced gasification systems (MAGSY): Simulation and validation for the case of the rising co-current reactor," Applied Energy, Elsevier, vol. 242(C), pages 526-533.
    16. Handriyanti Diah Puspitarini & Baptiste François & Marco Baratieri & Casey Brown & Mattia Zaramella & Marco Borga, 2020. "Complementarity between Combined Heat and Power Systems, Solar PV and Hydropower at a District Level: Sensitivity to Climate Characteristics along an Alpine Transect," Energies, MDPI, vol. 13(16), pages 1-19, August.
    17. Eleonora Cordioli & Francesco Patuzzi & Marco Baratieri, 2019. "Thermal and Catalytic Cracking of Toluene Using Char from Commercial Gasification Systems," Energies, MDPI, vol. 12(19), pages 1-16, October.
    18. Junaid Ahmad & Stergios Vakalis & Francesco Patuzzi & Marco Baratieri, 2021. "Effect of process conditions on the surface properties of biomass chars produced by means of pyrolysis and CO2 gasification," Energy & Environment, , vol. 32(8), pages 1378-1396, December.
    19. Badshah, Noor & Al-attab, K.A. & Zainal, Z.A., 2020. "Design optimization and experimental analysis of externally fired gas turbine system fuelled by biomass," Energy, Elsevier, vol. 198(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. González, Arnau & Riba, Jordi-Roger & Puig, Rita & Navarro, Pere, 2015. "Review of micro- and small-scale technologies to produce electricity and heat from Mediterranean forests׳ wood chips," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 143-155.
    2. Li, C.Y. & Deethayat, T. & Wu, J.Y. & Kiatsiriroat, T. & Wang, R.Z., 2018. "Simulation and evaluation of a biomass gasification-based combined cooling, heating, and power system integrated with an organic Rankine cycle," Energy, Elsevier, vol. 158(C), pages 238-255.
    3. Gao, Ningbo & Salisu, Jamilu & Quan, Cui & Williams, Paul, 2021. "Modified nickel-based catalysts for improved steam reforming of biomass tar: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    4. Lizhi Zhang & Fan Li & Bo Sun & Chenghui Zhang, 2019. "Integrated Optimization Design of Combined Cooling, Heating, and Power System Coupled with Solar and Biomass Energy," Energies, MDPI, vol. 12(4), pages 1-21, February.
    5. Wegener, Moritz & Malmquist, Anders & Isalgué, Antonio & Martin, Andrew, 2018. "Biomass-fired combined cooling, heating and power for small scale applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 392-410.
    6. Lopez, Gartzen & Alvarez, Jon & Amutio, Maider & Arregi, Aitor & Bilbao, Javier & Olazar, Martin, 2016. "Assessment of steam gasification kinetics of the char from lignocellulosic biomass in a conical spouted bed reactor," Energy, Elsevier, vol. 107(C), pages 493-501.
    7. Martínez González, Aldemar & Lesme Jaén, René & Silva Lora, Electo Eduardo, 2020. "Thermodynamic assessment of the integrated gasification-power plant operating in the sawmill industry: An energy and exergy analysis," Renewable Energy, Elsevier, vol. 147(P1), pages 1151-1163.
    8. Ismail, M.S. & Moghavvemi, M. & Mahlia, T.M.I., 2013. "Energy trends in Palestinian territories of West Bank and Gaza Strip: Possibilities for reducing the reliance on external energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 117-129.
    9. Giulio Allesina & Simone Pedrazzi, 2021. "Barriers to Success: A Technical Review on the Limits and Possible Future Roles of Small Scale Gasifiers," Energies, MDPI, vol. 14(20), pages 1-23, October.
    10. Sharma, Monikankana & N, Rakesh & Dasappa, S., 2016. "Solid oxide fuel cell operating with biomass derived producer gas: Status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 450-463.
    11. Li, C.Y. & Wu, J.Y. & Shen, Y. & Kan, X. & Dai, Y.J. & Wang, C.-H., 2018. "Evaluation of a combined cooling, heating, and power system based on biomass gasification in different climate zones in the U.S," Energy, Elsevier, vol. 144(C), pages 326-340.
    12. Strzalka, Rafal & Schneider, Dietrich & Eicker, Ursula, 2017. "Current status of bioenergy technologies in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 801-820.
    13. Chen, Guanyi & Li, Jian & Cheng, Zhanjun & Yan, Beibei & Ma, Wenchao & Yao, Jingang, 2018. "Investigation on model compound of biomass gasification tar cracking in microwave furnace: Comparative research," Applied Energy, Elsevier, vol. 217(C), pages 249-257.
    14. Ahsanullah Soomro & Shiyi Chen & Shiwei Ma & Wenguo Xiang, 2018. "Catalytic activities of nickel, dolomite, and olivine for tar removal and H2-enriched gas production in biomass gasification process," Energy & Environment, , vol. 29(6), pages 839-867, September.
    15. Prasertcharoensuk, Phuet & Bull, Steve J. & Phan, Anh N., 2019. "Gasification of waste biomass for hydrogen production: Effects of pyrolysis parameters," Renewable Energy, Elsevier, vol. 143(C), pages 112-120.
    16. Ferreira, Ana Cristina & Silva, João & Teixeira, Senhorinha & Teixeira, José Carlos & Nebra, Silvia Azucena, 2020. "Assessment of the Stirling engine performance comparing two renewable energy sources: Solar energy and biomass," Renewable Energy, Elsevier, vol. 154(C), pages 581-597.
    17. Wei, Dajun & Chen, Alian & Sun, Bo & Zhang, Chenghui, 2016. "Multi-objective optimal operation and energy coupling analysis of combined cooling and heating system," Energy, Elsevier, vol. 98(C), pages 296-307.
    18. Li, Fan & Sun, Bo & Zhang, Chenghui & Zhang, Lizhi, 2018. "Operation optimization for combined cooling, heating, and power system with condensation heat recovery," Applied Energy, Elsevier, vol. 230(C), pages 305-316.
    19. Ud Din, Zia & Zainal, Z.A., 2016. "Biomass integrated gasification–SOFC systems: Technology overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1356-1376.
    20. Martínez González, Aldemar & Silva Lora, Electo Eduardo & Escobar Palacio, José Carlos, 2019. "Syngas production from oil sludge gasification and its potential use in power generation systems: An energy and exergy analysis," Energy, Elsevier, vol. 169(C), pages 1175-1190.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:112:y:2016:i:c:p:285-293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.