IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v259y2022ics0360544222019144.html
   My bibliography  Save this article

Directly combining a power cycle and refrigeration cycle: Method and case study

Author

Listed:
  • Zhao, Dongpeng
  • Han, Changho
  • Cho, Wonhee
  • Zhao, Li
  • Kim, Yongchan

Abstract

Developing renewable energy and improving the efficiency of energy systems can effectively reduce carbon dioxide (CO2) emissions. The combined cycle has attracted attention owing to its high efficiency and variety of products. Although some combined cycles have been proposed in the existing literature, studies focusing on the directly combing method of closed power and refrigeration cycles are rare. This study summarizes the general principles of directly combining power and refrigeration cycles by sharing a thermodynamic process. Four different types of combined cycles were proposed using the Carnot and reversed Carnot cycles. Other combined cycles can evolve from these four combined cycles by considering different practical factors. In addition, an improved combined cycle involving sharing part of the condensation and compression processes between a CO2 power cycle and a vapor compression cycle was proposed. An energy analysis of the improved combined cycle was conducted. There are two operating modes of the improved combined cycle depending on the network output. Within the conditions studied, the maximum coefficient of performance of the improved combined cycle was approximately 0.306 and 0.676 in the cooling and power mode and the cooling mode, respectively.

Suggested Citation

  • Zhao, Dongpeng & Han, Changho & Cho, Wonhee & Zhao, Li & Kim, Yongchan, 2022. "Directly combining a power cycle and refrigeration cycle: Method and case study," Energy, Elsevier, vol. 259(C).
  • Handle: RePEc:eee:energy:v:259:y:2022:i:c:s0360544222019144
    DOI: 10.1016/j.energy.2022.125017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222019144
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yao, Yu & Shi, Lingfeng & Tian, Hua & Wang, Xuan & Sun, Xiaocun & Zhang, Yonghao & Wu, Zirui & Sun, Rui & Shu, Gequn, 2022. "Combined cooling and power cycle for engine waste heat recovery using CO2-based mixtures," Energy, Elsevier, vol. 240(C).
    2. Boyaghchi, Fateme Ahmadi & Chavoshi, Mansoure & Sabeti, Vajiheh, 2015. "Optimization of a novel combined cooling, heating and power cycle driven by geothermal and solar energies using the water/CuO (copper oxide) nanofluid," Energy, Elsevier, vol. 91(C), pages 685-699.
    3. You, Huailiang & Han, Jitian & Liu, Yang & Chen, Changnian & Ge, Yi, 2020. "4E analysis and multi-objective optimization of a micro poly-generation system based on SOFC/MGT/MED and organic steam ejector refrigerator," Energy, Elsevier, vol. 206(C).
    4. Shi, Lingfeng & Tian, Hua & Shu, Gequn, 2020. "Multi-mode analysis of a CO2-based combined refrigeration and power cycle for engine waste heat recovery," Applied Energy, Elsevier, vol. 264(C).
    5. Xu, Weicong & Zhao, Ruikai & Deng, Shuai & Zhao, Li & Mao, Samuel S., 2021. "Is zeotropic working fluid a promising option for organic Rankine cycle: A quantitative evaluation based on literature data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    6. Loni, Reyhaneh & Mahian, Omid & Markides, Christos N. & Bellos, Evangelos & le Roux, Willem G. & Kasaeian, Ailbakhsh & Najafi, Gholamhassan & Rajaee, Fatemeh, 2021. "A review of solar-driven organic Rankine cycles: Recent challenges and future outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    7. Zhang, Ruiyuan & Su, Wen & Lin, Xinxing & Zhou, Naijun & Zhao, Li, 2020. "Thermodynamic analysis and parametric optimization of a novel S–CO2 power cycle for the waste heat recovery of internal combustion engines," Energy, Elsevier, vol. 209(C).
    8. Shunsen Wang & Kunlun Bai & Yonghui Xie & Juan Di & Shangfang Cheng, 2014. "Analysis of Combined Power and Refrigeration Generation Using the Carbon Dioxide Thermodynamic Cycle to Recover the Waste Heat of an Internal Combustion Engine," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-12, June.
    9. Xu, Feng & Yogi Goswami, D & S. Bhagwat, Sunil, 2000. "A combined power/cooling cycle," Energy, Elsevier, vol. 25(3), pages 233-246.
    10. Sun, Xiaocun & Shi, Lingfeng & Tian, Hua & Wang, Xuan & Zhang, Yonghao & Yao, Yu & Sun, Rui & Shu, Gequn, 2022. "Analysis of an ideal composition tunable combined cooling and power cycle with CO2-based mixture," Energy, Elsevier, vol. 255(C).
    11. Xinxing Lin & Chonghui Chen & Aofang Yu & Likun Yin & Wen Su, 2021. "Performance Comparison of Advanced Transcritical Power Cycles with High-Temperature Working Fluids for the Engine Waste Heat Recovery," Energies, MDPI, vol. 14(18), pages 1-32, September.
    12. Song, Jian & Wang, Yaxiong & Wang, Kai & Wang, Jiangfeng & Markides, Christos N., 2021. "Combined supercritical CO2 (SCO2) cycle and organic Rankine cycle (ORC) system for hybrid solar and geothermal power generation: Thermoeconomic assessment of various configurations," Renewable Energy, Elsevier, vol. 174(C), pages 1020-1035.
    13. Yang, Xingyang & Zhao, Li & Li, Hailong & Yu, Zhixin, 2015. "Theoretical analysis of a combined power and ejector refrigeration cycle using zeotropic mixture," Applied Energy, Elsevier, vol. 160(C), pages 912-919.
    14. Wang, Hailei & Peterson, Richard & Herron, Tom, 2011. "Design study of configurations on system COP for a combined ORC (organic Rankine cycle) and VCC (vapor compression cycle)," Energy, Elsevier, vol. 36(8), pages 4809-4820.
    15. Vidal, A. & Best, R. & Rivero, R. & Cervantes, J., 2006. "Analysis of a combined power and refrigeration cycle by the exergy method," Energy, Elsevier, vol. 31(15), pages 3401-3414.
    16. Braimakis, Konstantinos, 2021. "Solar ejector cooling systems: A review," Renewable Energy, Elsevier, vol. 164(C), pages 566-602.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Zhixiang & Yuan, Han & Mei, Ning, 2023. "Theoretical analysis on extraction-ejection combined power and refrigeration cycle for ocean thermal energy conversion," Energy, Elsevier, vol. 273(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Aofang & Xing, Lingli & Su, Wen & Liu, Pei, 2023. "State-of-the-art review on the CO2 combined power and cooling system: System configuration, modeling and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    2. Yang, Chengdian & Yi, Fulong & Zhang, Jianyuan & Du, Genwang & Yin, Wei & Ma, Yuhua & Wang, Wei & You, Jinggang & Yu, Songtao, 2023. "Towards high-performance of organic flash cycle through cycle configuration improvement: State-of-art research," Energy, Elsevier, vol. 278(PA).
    3. Zare, V. & Mahmoudi, S.M.S. & Yari, M. & Amidpour, M., 2012. "Thermoeconomic analysis and optimization of an ammonia–water power/cooling cogeneration cycle," Energy, Elsevier, vol. 47(1), pages 271-283.
    4. Zhang, Ying & Deng, Shuai & Ni, Jiaxin & Zhao, Li & Yang, Xingyang & Li, Minxia, 2017. "A literature research on feasible application of mixed working fluid in flexible distributed energy system," Energy, Elsevier, vol. 137(C), pages 377-390.
    5. Li, You-Rong & Wang, Xiao-Qiong & Li, Xiao-Ping & Wang, Jian-Ning, 2014. "Performance analysis of a novel power/refrigerating combined-system driven by the low-grade waste heat using different refrigerants," Energy, Elsevier, vol. 73(C), pages 543-553.
    6. He, Jiacheng & Liu, Chao & Xu, Xiaoxiao & Li, Yourong & Wu, Shuangying & Xu, Jinliang, 2014. "Performance research on modified KCS (Kalina cycle system) 11 without throttle valve," Energy, Elsevier, vol. 64(C), pages 389-397.
    7. He, Jintao & Zhang, Yonghao & Tian, Hua & Wang, Xuan & Li, Ligeng & Cai, Jinwen & Shi, Lingfeng & Shu, Gequn, 2022. "Dynamic performance of a multi-mode operation CO2-based system combining cooling and power generation," Applied Energy, Elsevier, vol. 312(C).
    8. Wang, Jiangfeng & Dai, Yiping & Zhang, Taiyong & Ma, Shaolin, 2009. "Parametric analysis for a new combined power and ejector–absorption refrigeration cycle," Energy, Elsevier, vol. 34(10), pages 1587-1593.
    9. Barkhordarian, Orbel & Behbahaninia, Ali & Bahrampoury, Rasool, 2017. "A novel ammonia-water combined power and refrigeration cycle with two different cooling temperature levels," Energy, Elsevier, vol. 120(C), pages 816-826.
    10. Wang, Jiangfeng & Dai, Yiping & Gao, Lin, 2008. "Parametric analysis and optimization for a combined power and refrigeration cycle," Applied Energy, Elsevier, vol. 85(11), pages 1071-1085, November.
    11. Alirahmi, Seyed Mojtaba & Behzadi, Amirmohammad & Ahmadi, Pouria & Sadrizadeh, Sasan, 2023. "An innovative four-objective dragonfly-inspired optimization algorithm for an efficient, green, and cost-effective waste heat recovery from SOFC," Energy, Elsevier, vol. 263(PA).
    12. Prakash, M. & Sarkar, A. & Sarkar, J. & Chakraborty, J.P. & Mondal, S.S. & Sahoo, R.R., 2019. "Performance assessment of novel biomass gasification based CCHP systems integrated with syngas production," Energy, Elsevier, vol. 167(C), pages 379-390.
    13. Feili, Milad & Rostamzadeh, Hadi & Ghaebi, Hadi, 2022. "Thermo-mechanical energy level approach integrated with exergoeconomic optimization for realistic cost evaluation of a novel micro-CCHP system," Renewable Energy, Elsevier, vol. 190(C), pages 630-657.
    14. Mosaffa, A.H. & Garousi Farshi, L., 2022. "Exergoeconomic analysis and optimization of a novel integrated two power/cooling cogeneration system using zeotropic mixtures," Energy, Elsevier, vol. 253(C).
    15. Sun, Xiaocun & Shi, Lingfeng & Tian, Hua & Wang, Xuan & Zhang, Yonghao & Yao, Yu & Lu, Bowen & Sun, Rui & Shu, Gequn, 2023. "Performance enhancement of combined cooling and power cycle through composition adjustment in off-design conditions," Energy, Elsevier, vol. 278(PA).
    16. Ayou, Dereje S. & Bruno, Joan Carles & Saravanan, Rajagopal & Coronas, Alberto, 2013. "An overview of combined absorption power and cooling cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 728-748.
    17. Jobel Jose & Rajesh Kanna Parthasarathy & Senthil Kumar Arumugam, 2023. "Energy and Exergy Analysis of a Combined Cooling Heating and Power System with Regeneration," Sustainability, MDPI, vol. 15(18), pages 1-17, September.
    18. Seyed Mohammad Seyed Mahmoudi & Ramin Ghiami Sardroud & Mohsen Sadeghi & Marc A. Rosen, 2022. "Integration of Supercritical CO 2 Recompression Brayton Cycle with Organic Rankine/Flash and Kalina Cycles: Thermoeconomic Comparison," Sustainability, MDPI, vol. 14(14), pages 1-29, July.
    19. Cao, Yan & Dhahad, Hayder A. & Alsharif, Sameer & Sharma, Kamal & El.Shafy, Asem Saleh & Farhang, Babak & Mohammed, Adil Hussein, 2022. "Multi-objective optimizations and exergoeconomic analyses of a high-efficient bi-evaporator multigeneration system with freshwater unit," Renewable Energy, Elsevier, vol. 191(C), pages 699-714.
    20. Zhao, Yajing & Wang, Jiangfeng, 2016. "Exergoeconomic analysis and optimization of a flash-binary geothermal power system," Applied Energy, Elsevier, vol. 179(C), pages 159-170.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:259:y:2022:i:c:s0360544222019144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.