IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/689398.html
   My bibliography  Save this article

Analysis of Combined Power and Refrigeration Generation Using the Carbon Dioxide Thermodynamic Cycle to Recover the Waste Heat of an Internal Combustion Engine

Author

Listed:
  • Shunsen Wang
  • Kunlun Bai
  • Yonghui Xie
  • Juan Di
  • Shangfang Cheng

Abstract

A novel thermodynamic system is proposed to recover the waste heat of an internal combustion engine (ICE) by integrating the transcritical carbon dioxide (CO 2 ) refrigeration cycle with the supercritical CO 2 power cycle, and eight kinds of integration schemes are developed. The key parameters of the system are optimized through a genetic algorithm to achieve optimum matching with different variables and schemes, as well as the maximum net power output ( ). The results indicate that replacing a single-turbine scheme with a double-turbine scheme can significantly enhance the net power output ( ) and lower the inlet pressure of the power turbine ( ). With the same exhaust parameters of ICE, the maximum of the double-turbines scheme is 40%–50% higher than that of the single-turbine scheme. Replacing a single-stage compression scheme with a double-stage compression scheme can also lower the value of , while it could not always significantly enhance the value of . Except for the power consumption of air conditioning, the net power output of this thermodynamic system can reach up to 13%–35% of the engine power when it is used to recover the exhaust heat of internal combustion engines.

Suggested Citation

  • Shunsen Wang & Kunlun Bai & Yonghui Xie & Juan Di & Shangfang Cheng, 2014. "Analysis of Combined Power and Refrigeration Generation Using the Carbon Dioxide Thermodynamic Cycle to Recover the Waste Heat of an Internal Combustion Engine," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-12, June.
  • Handle: RePEc:hin:jnlmpe:689398
    DOI: 10.1155/2014/689398
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2014/689398.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2014/689398.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2014/689398?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Dongpeng & Han, Changho & Cho, Wonhee & Zhao, Li & Kim, Yongchan, 2022. "Directly combining a power cycle and refrigeration cycle: Method and case study," Energy, Elsevier, vol. 259(C).
    2. Ronelly De Souza & Melchiorre Casisi & Diego Micheli & Mauro Reini, 2021. "A Review of Small–Medium Combined Heat and Power (CHP) Technologies and Their Role within the 100% Renewable Energy Systems Scenario," Energies, MDPI, vol. 14(17), pages 1-30, August.
    3. Yu, Aofang & Xing, Lingli & Su, Wen & Liu, Pei, 2023. "State-of-the-art review on the CO2 combined power and cooling system: System configuration, modeling and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    4. Qin, Lei & Xie, Gongnan & Ma, Yuan & Li, Shulei, 2023. "Thermodynamic analysis and multi-objective optimization of a waste heat recovery system with a combined supercritical/transcritical CO2 cycle," Energy, Elsevier, vol. 265(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:689398. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.