IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v21y2013icp728-748.html
   My bibliography  Save this article

An overview of combined absorption power and cooling cycles

Author

Listed:
  • Ayou, Dereje S.
  • Bruno, Joan Carles
  • Saravanan, Rajagopal
  • Coronas, Alberto

Abstract

This paper presents an overview of the absorption cycles proposed in the literature for producing combined power and cooling. The dual output nature of these cycles makes it difficult to evaluate their performance so the various criteria used in the literature are presented and discussed. A combined system that simultaneously produces power and cooling can adapt to the whole range of energy demand – from only power to only cooling – with intermediate operation modes producing different ratios of power and cooling. This type of cycle uses highly concentrated ammonia vapour in the expander which can be expanded to a very low temperature without condensation and uses an absorption–condensation process instead of the conventional condensation process. The main advantage of these configurations is that they enable low-grade heat such as solar energy or waste heat to be used. The most suitable combined power and cooling systems for applications characterised by small-to-medium power and cooling capacities seem to be those that are directly derived from high-performance absorption chiller cycles.

Suggested Citation

  • Ayou, Dereje S. & Bruno, Joan Carles & Saravanan, Rajagopal & Coronas, Alberto, 2013. "An overview of combined absorption power and cooling cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 728-748.
  • Handle: RePEc:eee:rensus:v:21:y:2013:i:c:p:728-748
    DOI: 10.1016/j.rser.2012.12.068
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032113000245
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2012.12.068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jawahar, C.P. & Saravanan, R., 2010. "Generator absorber heat exchange based absorption cycle--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2372-2382, October.
    2. Schicktanz, M.D. & Wapler, J. & Henning, H.-M., 2011. "Primary energy and economic analysis of combined heating, cooling and power systems," Energy, Elsevier, vol. 36(1), pages 575-585.
    3. Sadrameli, S.M. & Goswami, D.Y., 2007. "Optimum operating conditions for a combined power and cooling thermodynamic cycle," Applied Energy, Elsevier, vol. 84(3), pages 254-265, March.
    4. Ibrahim, O.M. & Klein, S.A., 1996. "Absorption power cycles," Energy, Elsevier, vol. 21(1), pages 21-27.
    5. Clemente, Stefano & Micheli, Diego & Reini, Mauro & Taccani, Rodolfo, 2012. "Energy efficiency analysis of Organic Rankine Cycles with scroll expanders for cogenerative applications," Applied Energy, Elsevier, vol. 97(C), pages 792-801.
    6. Kiani, Behdad & Akisawa, Atsushi & Kashiwagi, Takao, 2008. "Thermodynamic analysis of load-leveling hyper energy converting and utilization system," Energy, Elsevier, vol. 33(3), pages 400-409.
    7. Vijayaraghavan, S. & Goswami, D.Y., 2006. "A combined power and cooling cycle modified to improve resource utilization efficiency using a distillation stage," Energy, Elsevier, vol. 31(8), pages 1177-1196.
    8. Zare, V. & Mahmoudi, S.M.S. & Yari, M. & Amidpour, M., 2012. "Thermoeconomic analysis and optimization of an ammonia–water power/cooling cogeneration cycle," Energy, Elsevier, vol. 47(1), pages 271-283.
    9. Wang, Jiangfeng & Dai, Yiping & Zhang, Taiyong & Ma, Shaolin, 2009. "Parametric analysis for a new combined power and ejector–absorption refrigeration cycle," Energy, Elsevier, vol. 34(10), pages 1587-1593.
    10. Liu, Meng & Zhang, Na, 2007. "Proposal and analysis of a novel ammonia–water cycle for power and refrigeration cogeneration," Energy, Elsevier, vol. 32(6), pages 961-970.
    11. Al-Sulaiman, Fahad A. & Hamdullahpur, Feridun & Dincer, Ibrahim, 2012. "Performance assessment of a novel system using parabolic trough solar collectors for combined cooling, heating, and power production," Renewable Energy, Elsevier, vol. 48(C), pages 161-172.
    12. Xu, Feng & Yogi Goswami, D & S. Bhagwat, Sunil, 2000. "A combined power/cooling cycle," Energy, Elsevier, vol. 25(3), pages 233-246.
    13. Wang, Jiangfeng & Zhao, Pan & Niu, Xiaoqiang & Dai, Yiping, 2012. "Parametric analysis of a new combined cooling, heating and power system with transcritical CO2 driven by solar energy," Applied Energy, Elsevier, vol. 94(C), pages 58-64.
    14. Zheng, Danxing & Chen, Bin & Qi, Yun & Jin, Hongguang, 2006. "Thermodynamic analysis of a novel absorption power/cooling combined-cycle," Applied Energy, Elsevier, vol. 83(4), pages 311-323, April.
    15. Lior, Noam & Zhang, Na, 2007. "Energy, exergy, and Second Law performance criteria," Energy, Elsevier, vol. 32(4), pages 281-296.
    16. Wang, Jiangfeng & Dai, Yiping & Gao, Lin, 2008. "Parametric analysis and optimization for a combined power and refrigeration cycle," Applied Energy, Elsevier, vol. 85(11), pages 1071-1085, November.
    17. Xu, Feng & Goswami, D.Yogi, 1999. "Thermodynamic properties of ammonia–water mixtures for power-cycle applications," Energy, Elsevier, vol. 24(6), pages 525-536.
    18. Vidal, A. & Best, R. & Rivero, R. & Cervantes, J., 2006. "Analysis of a combined power and refrigeration cycle by the exergy method," Energy, Elsevier, vol. 31(15), pages 3401-3414.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ayou, Dereje S. & Bruno, Joan Carles & Coronas, Alberto, 2017. "Integration of a mechanical and thermal compressor booster in combined absorption power and refrigeration cycles," Energy, Elsevier, vol. 135(C), pages 327-341.
    2. Zeyghami, Mehdi & Goswami, D. Yogi & Stefanakos, Elias, 2015. "A review of solar thermo-mechanical refrigeration and cooling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1428-1445.
    3. Ronelly De Souza & Melchiorre Casisi & Diego Micheli & Mauro Reini, 2021. "A Review of Small–Medium Combined Heat and Power (CHP) Technologies and Their Role within the 100% Renewable Energy Systems Scenario," Energies, MDPI, vol. 14(17), pages 1-30, August.
    4. Lee, Seung Yeob & Lee, Su Kyoung & Chung, Jin Taek & Kang, Yong Tae, 2018. "Numerical evaluation of a compact generator design for steam driven H2O/LiBr absorption chiller application," Energy, Elsevier, vol. 152(C), pages 512-520.
    5. Hernández-Magallanes, J.A. & Heard, C.L. & Best, R. & Rivera, W., 2018. "Modeling of a new absorption heat pump-transformer used to produce heat and power simultaneously," Energy, Elsevier, vol. 165(PA), pages 112-133.
    6. Yang, Mina & Lee, Seung Yeob & Chung, Jin Taek & Kang, Yong Tae, 2017. "High efficiency H2O/LiBr double effect absorption cycles with multi-heat sources for tri-generation application," Applied Energy, Elsevier, vol. 187(C), pages 243-254.
    7. Parham, Kiyan & Khamooshi, Mehrdad & Tematio, Daniel Boris Kenfack & Yari, Mortaza & Atikol, Uğur, 2014. "Absorption heat transformers – A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 430-452.
    8. Li, You-Rong & Wang, Xiao-Qiong & Li, Xiao-Ping & Wang, Jian-Ning, 2014. "Performance analysis of a novel power/refrigerating combined-system driven by the low-grade waste heat using different refrigerants," Energy, Elsevier, vol. 73(C), pages 543-553.
    9. Klinar, K. & Kitanovski, A., 2020. "Thermal control elements for caloric energy conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    10. Ullah, K.R. & Saidur, R. & Ping, H.W. & Akikur, R.K. & Shuvo, N.H., 2013. "A review of solar thermal refrigeration and cooling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 499-513.
    11. Yu, Zeting & Han, Jitian & Liu, Hai & Zhao, Hongxia, 2014. "Theoretical study on a novel ammonia–water cogeneration system with adjustable cooling to power ratios," Applied Energy, Elsevier, vol. 122(C), pages 53-61.
    12. Godefroy, Alexis & Perier-Muzet, Maxime & Mazet, Nathalie, 2020. "Novel hybrid thermochemical cycles for low-grade heat storage and autothermal power generation: A thermodynamic study," Applied Energy, Elsevier, vol. 270(C).
    13. Zhang, Zhaoli & Alelyani, Sami M. & Zhang, Nan & Zeng, Chao & Yuan, Yanping & Phelan, Patrick E., 2018. "Thermodynamic analysis of a novel sodium hydroxide-water solution absorption refrigeration, heating and power system for low-temperature heat sources," Applied Energy, Elsevier, vol. 222(C), pages 1-12.
    14. Amaris, Carlos & Vallès, Manel & Bourouis, Mahmoud, 2018. "Vapour absorption enhancement using passive techniques for absorption cooling/heating technologies: A review," Applied Energy, Elsevier, vol. 231(C), pages 826-853.
    15. Ebrahimi, Khosrow & Jones, Gerard F. & Fleischer, Amy S., 2014. "A review of data center cooling technology, operating conditions and the corresponding low-grade waste heat recovery opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 622-638.
    16. Braccio, Simone & Di Nardo, Antonio & Calchetti, Giorgio & Phan, Hai Trieu & Le Pierrès, Nolwenn & Tauveron, Nicolas, 2023. "Performance evaluation of a micro partial admission impulse axial turbine in a combined ammonia-water cooling and electricity absorption cycle," Energy, Elsevier, vol. 278(PB).
    17. Ghafoor, Abdul & Munir, Anjum, 2015. "Worldwide overview of solar thermal cooling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 763-774.
    18. Siddiqui, M.U. & Said, S.A.M., 2015. "A review of solar powered absorption systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 93-115.
    19. Vaclav Novotny & David J. Szucs & Jan Špale & Hung-Yin Tsai & Michal Kolovratnik, 2021. "Absorption Power and Cooling Combined Cycle with an Aqueous Salt Solution as a Working Fluid and a Technically Feasible Configuration," Energies, MDPI, vol. 14(12), pages 1-26, June.
    20. Zhang, Feng & Lei, Fang & Liao, Gaoliang & Jiaqiang, E., 2022. "Performance assessment and optimization on a novel geothermal combined cooling and power system integrating an absorption power cycle with an absorption-compression hybrid refrigeration cycle in paral," Renewable Energy, Elsevier, vol. 201(P1), pages 1061-1075.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jiangfeng & Dai, Yiping & Zhang, Taiyong & Ma, Shaolin, 2009. "Parametric analysis for a new combined power and ejector–absorption refrigeration cycle," Energy, Elsevier, vol. 34(10), pages 1587-1593.
    2. Barkhordarian, Orbel & Behbahaninia, Ali & Bahrampoury, Rasool, 2017. "A novel ammonia-water combined power and refrigeration cycle with two different cooling temperature levels," Energy, Elsevier, vol. 120(C), pages 816-826.
    3. Wang, Jiangfeng & Dai, Yiping & Gao, Lin, 2008. "Parametric analysis and optimization for a combined power and refrigeration cycle," Applied Energy, Elsevier, vol. 85(11), pages 1071-1085, November.
    4. Zare, V. & Mahmoudi, S.M.S. & Yari, M. & Amidpour, M., 2012. "Thermoeconomic analysis and optimization of an ammonia–water power/cooling cogeneration cycle," Energy, Elsevier, vol. 47(1), pages 271-283.
    5. Padilla, Ricardo Vasquez & Demirkaya, Gökmen & Goswami, D. Yogi & Stefanakos, Elias & Rahman, Muhammad M., 2010. "Analysis of power and cooling cogeneration using ammonia-water mixture," Energy, Elsevier, vol. 35(12), pages 4649-4657.
    6. Li, Xinguo & Zhang, Qilin & Li, Xiajie, 2013. "A Kalina cycle with ejector," Energy, Elsevier, vol. 54(C), pages 212-219.
    7. Prakash, M. & Sarkar, A. & Sarkar, J. & Chakraborty, J.P. & Mondal, S.S. & Sahoo, R.R., 2019. "Performance assessment of novel biomass gasification based CCHP systems integrated with syngas production," Energy, Elsevier, vol. 167(C), pages 379-390.
    8. Yu, Zeting & Han, Jitian & Liu, Hai & Zhao, Hongxia, 2014. "Theoretical study on a novel ammonia–water cogeneration system with adjustable cooling to power ratios," Applied Energy, Elsevier, vol. 122(C), pages 53-61.
    9. Han, Wei & Chen, Qiang & Sun, Liuli & Ma, Sijun & Zhao, Ting & Zheng, Danxing & Jin, Hongguang, 2014. "Experimental studies on a combined refrigeration/power generation system activated by low-grade heat," Energy, Elsevier, vol. 74(C), pages 59-66.
    10. Kyoung Hoon Kim, 2019. "Thermodynamic Analysis of Kalina Based Power and Cooling Cogeneration Cycle Employed Once Through Configuration," Energies, MDPI, vol. 12(8), pages 1-17, April.
    11. Zhao, Yajing & Wang, Jiangfeng & Cao, Liyan & Wang, Yu, 2016. "Comprehensive analysis and parametric optimization of a CCP (combined cooling and power) system driven by geothermal source," Energy, Elsevier, vol. 97(C), pages 470-487.
    12. Kumar, G. Praveen & Saravanan, R. & Coronas, Alberto, 2017. "Experimental studies on combined cooling and power system driven by low-grade heat sources," Energy, Elsevier, vol. 128(C), pages 801-812.
    13. Al-Mousawi, Fadhel Noraldeen & Al-Dadah, Raya & Mahmoud, Saad, 2016. "Low grade heat driven adsorption system for cooling and power generation with small-scale radial inflow turbine," Applied Energy, Elsevier, vol. 183(C), pages 1302-1316.
    14. Vaclav Novotny & David J. Szucs & Jan Špale & Hung-Yin Tsai & Michal Kolovratnik, 2021. "Absorption Power and Cooling Combined Cycle with an Aqueous Salt Solution as a Working Fluid and a Technically Feasible Configuration," Energies, MDPI, vol. 14(12), pages 1-26, June.
    15. Sarabchi, N. & Khoshbakhti Saray, R. & Mahmoudi, S.M.S., 2013. "Utilization of waste heat from a HCCI (homogeneous charge compression ignition) engine in a tri-generation system," Energy, Elsevier, vol. 55(C), pages 965-976.
    16. Sun, Liuli & Han, Wei & Jing, Xuye & Zheng, Danxing & Jin, Hongguang, 2013. "A power and cooling cogeneration system using mid/low-temperature heat source," Applied Energy, Elsevier, vol. 112(C), pages 886-897.
    17. He, Jiacheng & Liu, Chao & Xu, Xiaoxiao & Li, Yourong & Wu, Shuangying & Xu, Jinliang, 2014. "Performance research on modified KCS (Kalina cycle system) 11 without throttle valve," Energy, Elsevier, vol. 64(C), pages 389-397.
    18. F. Tchanche, Bertrand & Pétrissans, M. & Papadakis, G., 2014. "Heat resources and organic Rankine cycle machines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1185-1199.
    19. Zheng, Danxing & Jing, Xuye, 2013. "Chemical amplifier and energy utilization principles of heat conversion cycle systems," Energy, Elsevier, vol. 63(C), pages 180-188.
    20. Abed, Azher M. & Alghoul, M.A. & Sopian, K. & Majdi, Hasan Sh. & Al-Shamani, Ali Najah & Muftah, A.F., 2017. "Enhancement aspects of single stage absorption cooling cycle: A detailed review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1010-1045.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:21:y:2013:i:c:p:728-748. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.