IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v323y2025ics036054422501480x.html
   My bibliography  Save this article

Dynamic performance of an integrated heat pump system coupled free cooling and waste heat recovery in data centers

Author

Listed:
  • Zhou, Feng
  • Tian, Xuwen
  • Song, Yu
  • Ma, Guoyuan

Abstract

Recovering and reusing this waste heat for district heating is an effective strategy to enhance energy efficiency in data centers. To align data center waste heat recovery with heat consumer demand and improve energy utilization, a transient mathematical model of a data center-integrated heat pump district heating system was developed and validated. A case study involving a small data center with 300 standard racks in Beijing was conducted to analyze the system's operational and dynamic behavior. The results show that hot water and heating account for 35.70 % and 64.30 % of the total heat consumption, respectively. During the heating season, the heating heat pump unit exhibits a high heating coefficient of performance (COP), with a maximum heating COP of 5.27. Under year-round operation, the COP of the hot water heat pump unit exhibited periodic 24-h variations. Peak water consumption occurred from 6:00 to 9:00 and 21:00 to 24:00, with corresponding heating COP values of 3.87 and 4.24, respectively. The proposed system in addressing the cooling demand of the data center and the heating and hot water demands of the heat consumers, providing a feasible solution for improving the energy utilization efficiency of data centers.

Suggested Citation

  • Zhou, Feng & Tian, Xuwen & Song, Yu & Ma, Guoyuan, 2025. "Dynamic performance of an integrated heat pump system coupled free cooling and waste heat recovery in data centers," Energy, Elsevier, vol. 323(C).
  • Handle: RePEc:eee:energy:v:323:y:2025:i:c:s036054422501480x
    DOI: 10.1016/j.energy.2025.135838
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422501480X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135838?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Qionghai & Shao, Shuangquan & Zhang, Hainan & Tian, Changqing, 2019. "Development and composition of a data center heat recovery system and evaluation of annual operation performance," Energy, Elsevier, vol. 189(C).
    2. Marshall, Z.M. & Duquette, J., 2022. "A techno-economic evaluation of low global warming potential heat pump assisted organic Rankine cycle systems for data center waste heat recovery," Energy, Elsevier, vol. 242(C).
    3. Durand-Estebe, Baptiste & Le Bot, Cédric & Mancos, Jean Nicolas & Arquis, Eric, 2014. "Simulation of a temperature adaptive control strategy for an IWSE economizer in a data center," Applied Energy, Elsevier, vol. 134(C), pages 45-56.
    4. Ayou, Dereje S. & Bruno, Joan Carles & Saravanan, Rajagopal & Coronas, Alberto, 2013. "An overview of combined absorption power and cooling cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 728-748.
    5. Ebrahimi, Khosrow & Jones, Gerard F. & Fleischer, Amy S., 2014. "A review of data center cooling technology, operating conditions and the corresponding low-grade waste heat recovery opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 622-638.
    6. Yuan, Xiaolei & Liang, Yumin & Hu, Xinyi & Xu, Yizhe & Chen, Yongbao & Kosonen, Risto, 2023. "Waste heat recoveries in data centers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    7. Huang, Pei & Copertaro, Benedetta & Zhang, Xingxing & Shen, Jingchun & Löfgren, Isabelle & Rönnelid, Mats & Fahlen, Jan & Andersson, Dan & Svanfeldt, Mikael, 2020. "A review of data centers as prosumers in district energy systems: Renewable energy integration and waste heat reuse for district heating," Applied Energy, Elsevier, vol. 258(C).
    8. Yu, Jiawen & Jiang, Yiqiang & Yan, Yanqiu, 2019. "A simulation study on heat recovery of data center: A case study in Harbin, China," Renewable Energy, Elsevier, vol. 130(C), pages 154-173.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan, Xiaolei & Liang, Yumin & Hu, Xinyi & Xu, Yizhe & Chen, Yongbao & Kosonen, Risto, 2023. "Waste heat recoveries in data centers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    2. Hao, Yueting & Zhou, Haojie & Tian, Tong & Zhang, Wei & Zhou, Xin & Shen, Qingfei & Wu, Tong & Li, Ji, 2025. "Data centers waste heat recovery technologies: Review and evaluation," Applied Energy, Elsevier, vol. 384(C).
    3. Leyla Amiri & Edris Madadian & Navid Bahrani & Seyed Ali Ghoreishi-Madiseh, 2021. "Techno-Economic Analysis of Waste Heat Utilization in Data Centers: Application of Absorption Chiller Systems," Energies, MDPI, vol. 14(9), pages 1-11, April.
    4. Tian, Tong & Yang, Xuan & Li, Ji, 2025. "To boost waste heat harvesting and power generation through a portable heat pipe battery during high efficient electronics cooling," Applied Energy, Elsevier, vol. 377(PA).
    5. Huang, Congqi & Shao, Shuangquan & Wang, Ningbo & Guo, Yanhua & Wu, Wei, 2024. "Performance analysis of compression-assisted absorption refrigeration-heating system for waste heat recovery of liquid-cooling data center," Energy, Elsevier, vol. 305(C).
    6. Tian, Tong & Wang, Xinyue & Liu, Yang & Yang, Xuan & Sun, Bo & Li, Ji, 2023. "Nano-engineering enabled heat pipe battery: A powerful heat transfer infrastructure with capability of power generation," Applied Energy, Elsevier, vol. 348(C).
    7. Chen, Xiaoxuan & Wang, Xinyi & Wang, Lu & Zheng, Hong & Ding, Tao & Li, Zhen, 2025. "Multistage data center cooling system for temperature gradation and matching," Applied Energy, Elsevier, vol. 377(PC).
    8. Xiaoyu Zhou & Xinxing Lin & Wen Su & Ruochen Ding & Yaran Liang, 2025. "Thermo-Economic Potential of Carnot Batteries for the Waste Heat Recovery of Liquid-Cooled Data Centers with Different Combinations of Heat Pumps and Organic Rankine Cycles," Energies, MDPI, vol. 18(6), pages 1-28, March.
    9. Hyvönen, Johannes & Mori, Taro & Saunavaara, Juha & Hiltunen, Pauli & Pärssinen, Matti & Syri, Sanna, 2024. "Potential of solar photovoltaics and waste heat utilization in cold climate data centers. Case study: Finland and northern Japan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 201(C).
    10. Cui, Zhaopeng & Du, Shuai & Zhao, Tianhao & Chen, Zhihui & Wang, Ruzhu, 2024. "High-power-density adsorption chiller driven by data center waste heat using encapsulated composite as adsorbent," Energy, Elsevier, vol. 311(C).
    11. Socci, Luca & Rocchetti, Andrea & Verzino, Antonio & Zini, Andrea & Talluri, Lorenzo, 2024. "Enhancing third-generation district heating networks with data centre waste heat recovery: analysis of a case study in Italy," Energy, Elsevier, vol. 313(C).
    12. Borkowski, Mateusz & Piłat, Adam Krzysztof, 2022. "Customized data center cooling system operating at significant outdoor temperature fluctuations," Applied Energy, Elsevier, vol. 306(PB).
    13. Jerez Monsalves, Juan & Bergaentzlé, Claire & Keles, Dogan, 2023. "Impacts of flexible-cooling and waste-heat recovery from data centres on energy systems: A Danish case study," Energy, Elsevier, vol. 281(C).
    14. Oh, Jinwoo & Han, Ukmin & Jung, Yujun & Kang, Yong Tae & Lee, Hoseong, 2024. "Advancing waste heat potential assessment for net-zero emissions: A review of demand-based thermal energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    15. Li, Weiwei & Qian, Tong & Zhang, Yin & Shen, Yueqing & Wu, Chenghu & Tang, Wenhu, 2023. "Distributionally robust chance-constrained planning for regional integrated electricity–heat systems with data centers considering wind power uncertainty," Applied Energy, Elsevier, vol. 336(C).
    16. Bian, Yifan & Xie, Lirong & Ma, Lan & Cui, Chuanshi, 2025. "A novel two-stage energy sharing model for data center cluster considering integrated demand response of multiple loads," Applied Energy, Elsevier, vol. 384(C).
    17. Zhou, Yuekuan & Zheng, Siqian & Hensen, Jan L.M., 2024. "Machine learning-based digital district heating/cooling with renewable integrations and advanced low-carbon transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    18. Huang, Yongping & Deng, Zilong & Chen, Yongping & Zhang, Chengbin, 2023. "Performance investigation of a biomimetic latent heat thermal energy storage device for waste heat recovery in data centers," Applied Energy, Elsevier, vol. 335(C).
    19. Huang, Pei & Copertaro, Benedetta & Zhang, Xingxing & Shen, Jingchun & Löfgren, Isabelle & Rönnelid, Mats & Fahlen, Jan & Andersson, Dan & Svanfeldt, Mikael, 2020. "A review of data centers as prosumers in district energy systems: Renewable energy integration and waste heat reuse for district heating," Applied Energy, Elsevier, vol. 258(C).
    20. Gupta, Rohit & Asgari, Sahar & Moazamigoodarzi, Hosein & Down, Douglas G. & Puri, Ishwar K., 2021. "Energy, exergy and computing efficiency based data center workload and cooling management," Applied Energy, Elsevier, vol. 299(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:323:y:2025:i:c:s036054422501480x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.