IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v134y2014icp45-56.html
   My bibliography  Save this article

Simulation of a temperature adaptive control strategy for an IWSE economizer in a data center

Author

Listed:
  • Durand-Estebe, Baptiste
  • Le Bot, Cédric
  • Mancos, Jean Nicolas
  • Arquis, Eric

Abstract

Nowadays, with the constant evolution of Information Technology (IT) equipments, the energy consumption of data center over the world becomes a major concern. In 2011 the ASHRAE Technical committee 9.9 (TC9.9) issued important guidelines concerning server temperature and hygrometric environment to help engineer in the design of cooling solutions. While raising the temperature may be a source of heat pump energy savings, it induces an increase in the Computer Room Air Handling (CRAH) unit energy requirement, lowering the benefits. Hence optimal temperature cooling set point must be found to maximise the efficiency of the cooling plant. To test various chiller control strategy a “full scale” model is proposed. A 32kW data center is considered, cooled by a centrifugal heat pump linked to a wet cooling tower. An Integrated Water Side Economizer (IWSE) is added to minimize the energy consumption the regulation and the chilled air production is simulated with the software TRNSYS. The temperature field in the server room is calculated with the CFD code Thetis. To create a link between the 2 simulation environments, a Reduced Order Model (ROM) using Proper Orthogonal Decomposition (POD) is program with MATLAB. Finally this numerical model is used to investigate the effect of server room temperature increase on the cooling plant energy consumption. A new Temperature Adaptive Control Strategy (TACS) that minimizes the energy need is proposed and tested.

Suggested Citation

  • Durand-Estebe, Baptiste & Le Bot, Cédric & Mancos, Jean Nicolas & Arquis, Eric, 2014. "Simulation of a temperature adaptive control strategy for an IWSE economizer in a data center," Applied Energy, Elsevier, vol. 134(C), pages 45-56.
  • Handle: RePEc:eee:appene:v:134:y:2014:i:c:p:45-56
    DOI: 10.1016/j.apenergy.2014.07.072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914007557
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.07.072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Seem, J.E. & House, J.M., 2010. "Development and evaluation of optimization-based air economizer strategies," Applied Energy, Elsevier, vol. 87(3), pages 910-924, March.
    2. Bulut, Hüsamettin & Aktacir, Mehmet Azmi, 2011. "Determination of free cooling potential: A case study for Istanbul, Turkey," Applied Energy, Elsevier, vol. 88(3), pages 680-689, March.
    3. Dai, Jun & Das, Diganta & Pecht, Michael, 2012. "Prognostics-based risk mitigation for telecom equipment under free air cooling conditions," Applied Energy, Elsevier, vol. 99(C), pages 423-429.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leehter Yao & Jin-Hao Huang, 2019. "Multi-Objective Optimization of Energy Saving Control for Air Conditioning System in Data Center," Energies, MDPI, vol. 12(8), pages 1-16, April.
    2. Fan, Chengliang & Hinkelman, Kathryn & Fu, Yangyang & Zuo, Wangda & Huang, Sen & Shi, Chengnan & Mamaghani, Nasim & Faulkner, Cary & Zhou, Xiaoqing, 2021. "Open-source Modelica models for the control performance simulation of chiller plants with water-side economizer," Applied Energy, Elsevier, vol. 299(C).
    3. Heran Jing & Zhenhua Quan & Yaohua Zhao & Lincheng Wang & Ruyang Ren & Zichu Liu, 2020. "Thermal Performance and Energy Saving Analysis of Indoor Air–Water Heat Exchanger Based on Micro Heat Pipe Array for Data Center," Energies, MDPI, vol. 13(2), pages 1-24, January.
    4. Zhang, Hainan & Shao, Shuangquan & Xu, Hongbo & Zou, Huiming & Tang, Mingsheng & Tian, Changqing, 2017. "Simulation on the performance and free cooling potential of the thermosyphon mode in an integrated system of mechanical refrigeration and thermosyphon," Applied Energy, Elsevier, vol. 185(P2), pages 1604-1612.
    5. Borkowski, Mateusz & Piłat, Adam Krzysztof, 2022. "Customized data center cooling system operating at significant outdoor temperature fluctuations," Applied Energy, Elsevier, vol. 306(PB).
    6. Cho, Jinkyun & Kim, Yundeok, 2016. "Improving energy efficiency of dedicated cooling system and its contribution towards meeting an energy-optimized data center," Applied Energy, Elsevier, vol. 165(C), pages 967-982.
    7. He, Wei & Ding, Su & Zhang, Jifang & Pei, Chenchen & Zhang, Zhiheng & Wang, Yulin & Li, Hailong, 2021. "Performance optimization of server water cooling system based on minimum energy consumption analysis," Applied Energy, Elsevier, vol. 303(C).
    8. Habibi Khalaj, Ali & Scherer, Thomas & K. Halgamuge, Saman, 2016. "Energy, environmental and economical saving potential of data centers with various economizers across Australia," Applied Energy, Elsevier, vol. 183(C), pages 1528-1549.
    9. Shunling Ruan & Haiyan Xie & Song Jiang, 2017. "Integrated Proactive Control Model for Energy Efficiency Processes in Facilities Management: Applying Dynamic Exponential Smoothing Optimization," Sustainability, MDPI, vol. 9(9), pages 1-22, September.
    10. Naoki Futawatari & Yosuke Udagawa & Taro Mori & Hirofumi Hayama, 2020. "Impact of Fan Airflow of IT Equipment on Thermal Environment and Energy Consumption of a Data Center," Energies, MDPI, vol. 13(23), pages 1-27, November.
    11. Heran Jing & Zhenhua Quan & Yaohua Zhao & Lincheng Wang & Ruyang Ren & Ruixue Dong & Yuting Wu, 2022. "Experimental Investigation of Heat Transfer and Flow Characteristics of Split Natural Cooling System for Data Center Based on Micro Heat Pipe Array," Energies, MDPI, vol. 15(12), pages 1-22, June.
    12. Han, Zongwei & Wei, Haotian & Sun, Xiaoqing & Bai, Chenguang & Xue, Da & Li, Xiuming, 2020. "Study on influence of operating parameters of data center air conditioning system based on the concept of on-demand cooling," Renewable Energy, Elsevier, vol. 160(C), pages 99-111.
    13. Yuan, Xiaolei & Liang, Yumin & Hu, Xinyi & Xu, Yizhe & Chen, Yongbao & Kosonen, Risto, 2023. "Waste heat recoveries in data centers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    14. Pio Alessandro Lombardi & Kranthi Ranadheer Moreddy & André Naumann & Przemyslaw Komarnicki & Carmine Rodio & Sergio Bruno, 2019. "Data Centers as Active Multi-Energy Systems for Power Grid Decarbonization: A Technical and Economic Analysis," Energies, MDPI, vol. 12(21), pages 1-14, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Donghun & Braun, James E., 2020. "Model predictive control for supervising multiple rooftop unit economizers to fully leverage free cooling energy resource," Applied Energy, Elsevier, vol. 275(C).
    2. Siriwardana, Jayantha & Jayasekara, Saliya & Halgamuge, Saman K., 2013. "Potential of air-side economizers for data center cooling: A case study for key Australian cities," Applied Energy, Elsevier, vol. 104(C), pages 207-219.
    3. Habibi Khalaj, Ali & Scherer, Thomas & K. Halgamuge, Saman, 2016. "Energy, environmental and economical saving potential of data centers with various economizers across Australia," Applied Energy, Elsevier, vol. 183(C), pages 1528-1549.
    4. Dai, Jun & Das, Diganta & Ohadi, Michael & Pecht, Michael, 2013. "Reliability risk mitigation of free air cooling through prognostics and health management," Applied Energy, Elsevier, vol. 111(C), pages 104-112.
    5. Dai, Jun & Das, Diganta & Pecht, Michael, 2012. "Prognostics-based risk mitigation for telecom equipment under free air cooling conditions," Applied Energy, Elsevier, vol. 99(C), pages 423-429.
    6. Sun, Xiaoqin & Zhang, Quan & Medina, Mario A. & Liao, Shuguang, 2015. "Performance of a free-air cooling system for telecommunications base stations using phase change materials (PCMs): In-situ tests," Applied Energy, Elsevier, vol. 147(C), pages 325-334.
    7. Xiaofei Huang & Junwei Yan & Xuan Zhou & Yixin Wu & Shichen Hu, 2023. "Cooling Technologies for Internet Data Center in China: Principle, Energy Efficiency, and Applications," Energies, MDPI, vol. 16(20), pages 1-31, October.
    8. Wang, Cuiling & Wang, Baolong & Cui, Mengdi & Wei, Falin, 2023. "Optimal fresh-air utilization strategy for constant temperature and humidity air-conditioning system based on isocost line," Energy, Elsevier, vol. 263(PD).
    9. Tejero-González, Ana & Andrés-Chicote, Manuel & García-Ibáñez, Paola & Velasco-Gómez, Eloy & Rey-Martínez, Francisco Javier, 2016. "Assessing the applicability of passive cooling and heating techniques through climate factors: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 727-742.
    10. Han, Zongwei & Xue, Da & Wei, Haotian & Ji, Qiang & Sun, Xiaoqing & Li, Xiuming, 2021. "Study on operation strategy of evaporative cooling composite air conditioning system in data center," Renewable Energy, Elsevier, vol. 177(C), pages 1147-1160.
    11. Barone, Giovanni & Buonomano, Annamaria & Giuzio, Giovanni Francesco & Palombo, Adolfo, 2023. "Towards zero energy infrastructure buildings: optimal design of envelope and cooling system," Energy, Elsevier, vol. 279(C).
    12. Chenfei Liu & Stephen Sharples & Haniyeh Mohammadpourkarbasi, 2023. "A Review of Building Energy Retrofit Measures, Passive Design Strategies and Building Regulation for the Low Carbon Development of Existing Dwellings in the Hot Summer–Cold Winter Region of China," Energies, MDPI, vol. 16(10), pages 1-25, May.
    13. Habibi Khalaj, Ali & Halgamuge, Saman K., 2017. "A Review on efficient thermal management of air- and liquid-cooled data centers: From chip to the cooling system," Applied Energy, Elsevier, vol. 205(C), pages 1165-1188.
    14. Oró, Eduard & Depoorter, Victor & Garcia, Albert & Salom, Jaume, 2015. "Energy efficiency and renewable energy integration in data centres. Strategies and modelling review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 429-445.
    15. Han, Zongwei & Ji, Qiang & Wei, Haotian & Xue, Da & Sun, Xiaoqing & Zhang, Xueping & Li, Xiuming, 2020. "Simulation study on performance of data center air-conditioning system with novel evaporative condenser," Energy, Elsevier, vol. 210(C).
    16. Fiorentini, Massimo & Tartarini, Federico & Ledo Gomis, Laia & Daly, Daniel & Cooper, Paul, 2019. "Development of an enthalpy-based index to assess climatic potential for ventilative cooling of buildings: An Australian example," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    17. Petraglia, Antonio & Spagnuolo, Antonio & Vetromile, Carmela & D'Onofrio, Antonio & Lubritto, Carmine, 2015. "Heat flows and energetic behavior of a telecommunication radio base station," Energy, Elsevier, vol. 89(C), pages 75-83.
    18. Goopyo Hong & Chul Kim & Jun Hong, 2020. "Energy Conservation Potential of Economizer Controls Using Optimal Outdoor Air Fraction Based on Field Study," Energies, MDPI, vol. 13(19), pages 1-19, September.
    19. Zhang, Hainan & Shao, Shuangquan & Xu, Hongbo & Zou, Huiming & Tian, Changqing, 2014. "Free cooling of data centers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 171-182.
    20. Yuan, Weixing & Yang, Bo & Yang, Yufei & Ren, Kexian & Xu, Jian & Liao, Yibing, 2015. "Development and experimental study of the characteristics of a prototype miniature vapor compression refrigerator," Applied Energy, Elsevier, vol. 143(C), pages 47-57.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:134:y:2014:i:c:p:45-56. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.