IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i21p4182-d282822.html
   My bibliography  Save this article

Data Centers as Active Multi-Energy Systems for Power Grid Decarbonization: A Technical and Economic Analysis

Author

Listed:
  • Pio Alessandro Lombardi

    (Convergent Infrastructures, Fraunhofer Institute for Factory Operation and Automation IFF, 39106 Magdeburg, Germany)

  • Kranthi Ranadheer Moreddy

    (Ventury GmbH, 01309 Dresden, Germany)

  • André Naumann

    (Convergent Infrastructures, Fraunhofer Institute for Factory Operation and Automation IFF, 39106 Magdeburg, Germany)

  • Przemyslaw Komarnicki

    (Convergent Infrastructures, Fraunhofer Institute for Factory Operation and Automation IFF, 39106 Magdeburg, Germany)

  • Carmine Rodio

    (Department of Electrical Engineering and Information Technology, Politecnico di Bari, 70126 Bari, Italy)

  • Sergio Bruno

    (Department of Electrical Engineering and Information Technology, Politecnico di Bari, 70126 Bari, Italy)

Abstract

Power system decarbonization will be one of the main challenges confronting society over the next twenty to thirty years. Renewable energy sources (RES), such as wind and solar, will be the main resources supplying the power grid. Given their volatility, their integration into the grid necessitates planning and utilizing new flexibility options. Energy storage systems (ESS), multi-energy systems and active consumer involvement are three solutions attracting the scientific community’s attention. Data centers (DCs) provide a very high degree of flexibility for consumers. They can be utilized to support system operators or integrate power generated by locally installed renewable energy source generators in the DC’s network. This study is intended to contribute by developing a methodology for planning new flexibility options in DCs. The methodology developed treats DCs as active multi-energy systems. Control strategies were also developed. The technical and economic performance of the solutions implemented was evaluated.

Suggested Citation

  • Pio Alessandro Lombardi & Kranthi Ranadheer Moreddy & André Naumann & Przemyslaw Komarnicki & Carmine Rodio & Sergio Bruno, 2019. "Data Centers as Active Multi-Energy Systems for Power Grid Decarbonization: A Technical and Economic Analysis," Energies, MDPI, vol. 12(21), pages 1-14, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4182-:d:282822
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/21/4182/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/21/4182/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maria Avgerinou & Paolo Bertoldi & Luca Castellazzi, 2017. "Trends in Data Centre Energy Consumption under the European Code of Conduct for Data Centre Energy Efficiency," Energies, MDPI, vol. 10(10), pages 1-18, September.
    2. Durand-Estebe, Baptiste & Le Bot, Cédric & Mancos, Jean Nicolas & Arquis, Eric, 2014. "Simulation of a temperature adaptive control strategy for an IWSE economizer in a data center," Applied Energy, Elsevier, vol. 134(C), pages 45-56.
    3. Luca Chiaraviglio & Antonio Cianfrani & Marco Listanti & William Liu & Marco Polverini, 2016. "Lifetime-Aware Cloud Data Centers: Models and Performance Evaluation," Energies, MDPI, vol. 9(6), pages 1-17, June.
    4. Lombardi, Pio & Hänsch, Kathleen & Arendarski, Bartlomiej & Komarnicki, Przemyslaw, 2017. "Information and power terminals: A reliable microgrid infrastructure for use in disaster scenarios," International Journal of Critical Infrastructure Protection, Elsevier, vol. 19(C), pages 49-58.
    5. Yan, Chengchu & Shi, Wenxing & Li, Xianting & Zhao, Yang, 2016. "Optimal design and application of a compound cold storage system combining seasonal ice storage and chilled water storage," Applied Energy, Elsevier, vol. 171(C), pages 1-11.
    6. Yan, Chengchu & Shi, Wenxing & Li, Xianting & Wang, Shengwei, 2016. "A seasonal cold storage system based on separate type heat pipe for sustainable building cooling," Renewable Energy, Elsevier, vol. 85(C), pages 880-889.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marc Richter & Pio Lombardi & Bartlomiej Arendarski & André Naumann & Andreas Hoepfner & Przemyslaw Komarnicki & Antonio Pantaleo, 2021. "A Vision for Energy Decarbonization: Planning Sustainable Tertiary Sites as Net-Zero Energy Systems," Energies, MDPI, vol. 14(17), pages 1-16, September.
    2. Tudor Cioara & Marcel Antal & Claudia Daniela Antal (Pop) & Ionut Anghel & Massimo Bertoncini & Diego Arnone & Marilena Lazzaro & Marzia Mammina & Terpsichori-Helen Velivassaki & Artemis Voulkidis & Y, 2020. "Data Centers Optimized Integration with Multi-Energy Grids: Test Cases and Results in Operational Environment," Sustainability, MDPI, vol. 12(23), pages 1-23, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Borkowski, Mateusz & Piłat, Adam Krzysztof, 2022. "Customized data center cooling system operating at significant outdoor temperature fluctuations," Applied Energy, Elsevier, vol. 306(PB).
    2. Fong, Matthew & Alzoubi, Mahmoud A. & Kurnia, Jundika C. & Sasmito, Agus P., 2019. "On the performance of ground coupled seasonal thermal energy storage for heating and cooling: A Canadian context," Applied Energy, Elsevier, vol. 250(C), pages 593-604.
    3. Liu, Zichu & Quan, Zhenhua & Zhang, Nan & Wang, Yubo & Yang, Mingguang & Zhao, Yaohua, 2023. "Energy and exergy analysis of a novel direct-expansion ice thermal storage system based on three-fluid heat exchanger module," Applied Energy, Elsevier, vol. 330(PB).
    4. Li, Xingping & Li, Ji & Zhou, Guohui & Lv, Lucang, 2020. "Quantitative analysis of passive seasonal cold storage with a two-phase closed thermosyphon," Applied Energy, Elsevier, vol. 260(C).
    5. Yan, Chengchu & Gang, Wenjie & Niu, Xiaofeng & Peng, Xujian & Wang, Shengwei, 2017. "Quantitative evaluation of the impact of building load characteristics on energy performance of district cooling systems," Applied Energy, Elsevier, vol. 205(C), pages 635-643.
    6. Pei Cai & Youxue Jiang & He Wang & Liangyu Wu & Peng Cao & Yulong Zhang & Feng Yao, 2020. "Numerical Simulation on the Influence of the Longitudinal Fins on the Enhancement of a Shell-and-Tube Ice Storage Device," Sustainability, MDPI, vol. 12(6), pages 1-14, March.
    7. Yan, Chengchu & Wang, Fengling & Pan, Yan & Shan, Kui & Kosonen, Risto, 2020. "A multi-timescale cold storage system within energy flexible buildings for power balance management of smart grids," Renewable Energy, Elsevier, vol. 161(C), pages 626-634.
    8. Michael Lanahan & Paulo Cesar Tabares-Velasco, 2017. "Seasonal Thermal-Energy Storage: A Critical Review on BTES Systems, Modeling, and System Design for Higher System Efficiency," Energies, MDPI, vol. 10(6), pages 1-24, May.
    9. DeLovato, Nicolas & Sundarnath, Kavin & Cvijovic, Lazar & Kota, Krishna & Kuravi, Sarada, 2019. "A review of heat recovery applications for solar and geothermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    10. Xia, Guanghui & Zhuang, Dawei & Ding, Guoliang & Lu, Jingchao, 2020. "A quasi-three-dimensional distributed parameter model of micro-channel separated heat pipe applied for cooling telecommunication cabinets," Applied Energy, Elsevier, vol. 276(C).
    11. Shunling Ruan & Haiyan Xie & Song Jiang, 2017. "Integrated Proactive Control Model for Energy Efficiency Processes in Facilities Management: Applying Dynamic Exponential Smoothing Optimization," Sustainability, MDPI, vol. 9(9), pages 1-22, September.
    12. van den Berg, Bob & Sadowski, Bert M. & Pals, Luuk, 2018. "Towards sustainable data centres: Novel internal network technologies leading to sustainable cost and energy consumption in data centres in The Netherlands," 29th European Regional ITS Conference, Trento 2018 184933, International Telecommunications Society (ITS).
    13. Hackl, Andreas, 2018. "Mobility equity in a globalized world: Reducing inequalities in the sustainable development agenda," World Development, Elsevier, vol. 112(C), pages 150-162.
    14. Madhubala Ganesan & Ah-Lian Kor & Colin Pattinson & Eric Rondeau, 2020. "Green Cloud Software Engineering for Big Data Processing," Sustainability, MDPI, vol. 12(21), pages 1-24, November.
    15. Anagnostos, D. & Schmidt, T. & Cavadias, S. & Soudris, D. & Poortmans, J. & Catthoor, F., 2019. "A method for detailed, short-term energy yield forecasting of photovoltaic installations," Renewable Energy, Elsevier, vol. 130(C), pages 122-129.
    16. Wunvisa Tipasri & Amnart Suksri & Karthikeyan Velmurugan & Tanakorn Wongwuttanasatian, 2022. "Energy Management for an Air Conditioning System Using a Storage Device to Reduce the On-Peak Power Consumption," Energies, MDPI, vol. 15(23), pages 1-19, November.
    17. HOROBEȚ Alexandra & MNOHOGHITNEI Irina & BELAȘCU Lucian & CROITORU Ionuț Marius, 2023. "Esg Reporting And Capital Market Investors: Insights From The Global Technology And Fintech Industries," Studies in Business and Economics, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 18(2), pages 178-195, August.
    18. Petrović, Stefan & Colangelo, Alessandro & Balyk, Olexandr & Delmastro, Chiara & Gargiulo, Maurizio & Simonsen, Mikkel Bosack & Karlsson, Kenneth, 2020. "The role of data centres in the future Danish energy system," Energy, Elsevier, vol. 194(C).
    19. Kang, Jing & Wang, Shengwei & Yan, Chengchu, 2019. "A new distributed energy system configuration for cooling dominated districts and the performance assessment based on real site measurements," Renewable Energy, Elsevier, vol. 131(C), pages 390-403.
    20. Sylwia Słupik & Joanna Kos-Łabędowicz & Joanna Trzęsiok, 2021. "How to Encourage Energy Savings Behaviours? The Most Effective Incentives from the Perspective of European Consumers," Energies, MDPI, vol. 14(23), pages 1-25, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4182-:d:282822. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.