IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v85y2016icp880-889.html
   My bibliography  Save this article

A seasonal cold storage system based on separate type heat pipe for sustainable building cooling

Author

Listed:
  • Yan, Chengchu
  • Shi, Wenxing
  • Li, Xianting
  • Wang, Shengwei

Abstract

Seasonal cold storage is a high-efficient and environmental-friendly technique that uses the stored natural cold energy in winter (e.g., snow, ice or cold ambient air) for free-cooling in summer. This paper presents a seasonal cold storage system that uses separate type heat pipes to charge the cold energy from ambient air in winter automatically, without consuming any energy. The charged cold energy is stored in the form of ice in an insulated tank and is extracted as chilled water for cooling supply in summer, which help to reduce the chiller running time and reduce the associated electricity consumption and greenhouse gas emission significantly. A quasi-steady two-dimensional mathematical model of the system is developed for characterizing the dynamic performance of ice growth (i.e., cold charging). The model is validated using the field measurement data from an ice charging experiment conducted in Beijing. The impacts of various affecting factors, including the weather data and the key parameters of heat pipes, on the charging performance of the cold storage system are analyzed. The effectiveness and sustainability of the proposed system for cooling are demonstrated through a case study of a kindergarten building in Beijing.

Suggested Citation

  • Yan, Chengchu & Shi, Wenxing & Li, Xianting & Wang, Shengwei, 2016. "A seasonal cold storage system based on separate type heat pipe for sustainable building cooling," Renewable Energy, Elsevier, vol. 85(C), pages 880-889.
  • Handle: RePEc:eee:renene:v:85:y:2016:i:c:p:880-889
    DOI: 10.1016/j.renene.2015.07.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115301191
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.07.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hamada, Yasuhiro & Nakamura, Makoto & Kubota, Hideki, 2007. "Field measurements and analyses for a hybrid system for snow storage/melting and air conditioning by using renewable energy," Applied Energy, Elsevier, vol. 84(2), pages 117-134, February.
    2. Singh, Randeep & Mochizuki, Masataka & Mashiko, Koichi & Nguyen, Thang, 2011. "Heat pipe based cold energy storage systems for datacenter energy conservation," Energy, Elsevier, vol. 36(5), pages 2802-2811.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fong, Matthew & Alzoubi, Mahmoud A. & Kurnia, Jundika C. & Sasmito, Agus P., 2019. "On the performance of ground coupled seasonal thermal energy storage for heating and cooling: A Canadian context," Applied Energy, Elsevier, vol. 250(C), pages 593-604.
    2. Kang, Jing & Wang, Shengwei & Yan, Chengchu, 2019. "A new distributed energy system configuration for cooling dominated districts and the performance assessment based on real site measurements," Renewable Energy, Elsevier, vol. 131(C), pages 390-403.
    3. Cao, Jingyu & Zheng, Zhanying & Asim, Muhammad & Hu, Mingke & Wang, Qiliang & Su, Yuehong & Pei, Gang & Leung, Michael K.H., 2020. "A review on independent and integrated/coupled two-phase loop thermosyphons," Applied Energy, Elsevier, vol. 280(C).
    4. Yan, Chengchu & Gang, Wenjie & Niu, Xiaofeng & Peng, Xujian & Wang, Shengwei, 2017. "Quantitative evaluation of the impact of building load characteristics on energy performance of district cooling systems," Applied Energy, Elsevier, vol. 205(C), pages 635-643.
    5. Alizadeh, M. & Sadrameli, S.M., 2016. "Development of free cooling based ventilation technology for buildings: Thermal energy storage (TES) unit, performance enhancement techniques and design considerations – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 619-645.
    6. Pio Alessandro Lombardi & Kranthi Ranadheer Moreddy & André Naumann & Przemyslaw Komarnicki & Carmine Rodio & Sergio Bruno, 2019. "Data Centers as Active Multi-Energy Systems for Power Grid Decarbonization: A Technical and Economic Analysis," Energies, MDPI, vol. 12(21), pages 1-14, November.
    7. Li, Xiwang & Malkawi, Ali, 2016. "Multi-objective optimization for thermal mass model predictive control in small and medium size commercial buildings under summer weather conditions," Energy, Elsevier, vol. 112(C), pages 1194-1206.
    8. Li, Xingping & Li, Ji & Zhou, Guohui & Lv, Lucang, 2020. "Quantitative analysis of passive seasonal cold storage with a two-phase closed thermosyphon," Applied Energy, Elsevier, vol. 260(C).
    9. Michael Lanahan & Paulo Cesar Tabares-Velasco, 2017. "Seasonal Thermal-Energy Storage: A Critical Review on BTES Systems, Modeling, and System Design for Higher System Efficiency," Energies, MDPI, vol. 10(6), pages 1-24, May.
    10. Pei Cai & Youxue Jiang & He Wang & Liangyu Wu & Peng Cao & Yulong Zhang & Feng Yao, 2020. "Numerical Simulation on the Influence of the Longitudinal Fins on the Enhancement of a Shell-and-Tube Ice Storage Device," Sustainability, MDPI, vol. 12(6), pages 1-14, March.
    11. Liu, Zichu & Quan, Zhenhua & Zhang, Nan & Wang, Yubo & Yang, Mingguang & Zhao, Yaohua, 2023. "Energy and exergy analysis of a novel direct-expansion ice thermal storage system based on three-fluid heat exchanger module," Applied Energy, Elsevier, vol. 330(PB).
    12. Yan, Chengchu & Wang, Fengling & Pan, Yan & Shan, Kui & Kosonen, Risto, 2020. "A multi-timescale cold storage system within energy flexible buildings for power balance management of smart grids," Renewable Energy, Elsevier, vol. 161(C), pages 626-634.
    13. Yan, Chengchu & Shi, Wenxing & Li, Xianting & Zhao, Yang, 2016. "Optimal design and application of a compound cold storage system combining seasonal ice storage and chilled water storage," Applied Energy, Elsevier, vol. 171(C), pages 1-11.
    14. Xia, Guanghui & Zhuang, Dawei & Ding, Guoliang & Lu, Jingchao, 2020. "A quasi-three-dimensional distributed parameter model of micro-channel separated heat pipe applied for cooling telecommunication cabinets," Applied Energy, Elsevier, vol. 276(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xingping & Li, Ji & Zhou, Guohui & Lv, Lucang, 2020. "Quantitative analysis of passive seasonal cold storage with a two-phase closed thermosyphon," Applied Energy, Elsevier, vol. 260(C).
    2. Yan, Chengchu & Shi, Wenxing & Li, Xianting & Zhao, Yang, 2016. "Optimal design and application of a compound cold storage system combining seasonal ice storage and chilled water storage," Applied Energy, Elsevier, vol. 171(C), pages 1-11.
    3. Hamada, Yasuhiro & Nagata, Tsutomu & Kubota, Hideki & Ono, Takayuki & Hashimoto, Yoshiaki, 2012. "Study on a snow storage system in a renovated space," Renewable Energy, Elsevier, vol. 41(C), pages 401-406.
    4. Zhou, Zhihua & Wang, Xiaojuan & Zhang, Xiaoyan & Chen, Guanyi & Zuo, Jian & Pullen, Stephen, 2015. "Effectiveness of pavement-solar energy system – An experimental study," Applied Energy, Elsevier, vol. 138(C), pages 1-10.
    5. Chao, Jingwei & Xu, Jiaxing & Xiang, Shizhao & Bai, Zhaoyuan & Yan, Taisen & Wang, Pengfei & Wang, Ruzhu & Li, Tingxian, 2023. "High energy-density and power-density cold storage enabled by sorption thermal battery based on liquid-gas phase change process," Applied Energy, Elsevier, vol. 334(C).
    6. Liu, Zichu & Quan, Zhenhua & Zhang, Nan & Wang, Yubo & Yang, Mingguang & Zhao, Yaohua, 2023. "Energy and exergy analysis of a novel direct-expansion ice thermal storage system based on three-fluid heat exchanger module," Applied Energy, Elsevier, vol. 330(PB).
    7. Chu, Wen-Xiao & Wang, Chi-Chuan, 2019. "A review on airflow management in data centers," Applied Energy, Elsevier, vol. 240(C), pages 84-119.
    8. Bouchenna, Chafea & Huchet, Florian & Aramiou, Carl & Hamard, Erwan & Le Guen, Laurédan & Paul, Jean-Marc, 2021. "Heat exchanger design based on earthen materials," Energy, Elsevier, vol. 227(C).
    9. Kim, Min-Hwi & Ham, Sang-Woo & Park, Jun-Seok & Jeong, Jae-Weon, 2014. "Impact of integrated hot water cooling and desiccant-assisted evaporative cooling systems on energy savings in a data center," Energy, Elsevier, vol. 78(C), pages 384-396.
    10. Wang, Zhangyuan & Zhao, Xudong & Han, Zhonghe & Luo, Liang & Xiang, Jinwei & Zheng, Senglin & Liu, Guangming & Yu, Min & Cui, Yu & Shittu, Samson & Hu, Menglong, 2021. "Advanced big-data/machine-learning techniques for optimization and performance enhancement of the heat pipe technology – A review and prospective study," Applied Energy, Elsevier, vol. 294(C).
    11. Jouhara, Hussam & Ajji, Zaki & Koudsi, Yahia & Ezzuddin, Hatem & Mousa, Nisreen, 2013. "Experimental investigation of an inclined-condenser wickless heat pipe charged with water and an ethanol–water azeotropic mixture," Energy, Elsevier, vol. 61(C), pages 139-147.
    12. Hamada, Yasuhiro & Nagata, Tsutomu & Kubota, Hideki & Ono, Takayuki & Musha, Ryosuke, 2014. "Development and characteristics of a method for self-contained ice production using cold outdoor air in winter," Energy, Elsevier, vol. 68(C), pages 939-946.
    13. Chernysheva, Mariya A. & Pastukhov, Vladimir G. & Maydanik, Yury F., 2013. "Analysis of heat exchange in the compensation chamber of a loop heat pipe," Energy, Elsevier, vol. 55(C), pages 253-262.
    14. Cao, Xuan & Kong, Gangqiang & Han, Chanjuan, 2024. "Feasibility assessment of implementing energy pile-based snowmelt system on a practical bridge deck in diverse climate conditions across China," Energy, Elsevier, vol. 290(C).
    15. Yan, Chengchu & Wang, Fengling & Pan, Yan & Shan, Kui & Kosonen, Risto, 2020. "A multi-timescale cold storage system within energy flexible buildings for power balance management of smart grids," Renewable Energy, Elsevier, vol. 161(C), pages 626-634.
    16. Ding, Tao & Chen, Xiaoxuan & Cao, Hanwen & He, Zhiguang & Wang, Jianmin & Li, Zhen, 2021. "Principles of loop thermosyphon and its application in data center cooling systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    17. Chernysheva, M.A. & Yushakova, S.I. & Maydanik, Yu.F., 2014. "Copper–water loop heat pipes for energy-efficient cooling systems of supercomputers," Energy, Elsevier, vol. 69(C), pages 534-542.
    18. Zhang, Hainan & Shao, Shuangquan & Xu, Hongbo & Zou, Huiming & Tian, Changqing, 2014. "Free cooling of data centers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 171-182.
    19. Jouhara, Hussam & Ezzuddin, Hatem, 2013. "Thermal performance characteristics of a wraparound loop heat pipe (WLHP) charged with R134A," Energy, Elsevier, vol. 61(C), pages 128-138.
    20. Xu, Huining & Shi, Hao & Tan, Yiqiu & Ye, Qing & Liu, Xiujie, 2022. "Modeling and assessment of operation economic benefits for hydronic snow melting pavement system," Applied Energy, Elsevier, vol. 326(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:85:y:2016:i:c:p:880-889. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.