IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v238y2025ics0960148124019670.html
   My bibliography  Save this article

Optimization of a cold thermal energy storage system with micro heat pipe arrays by statistical approach: Taguchi method and response surface method

Author

Listed:
  • Liu, Zichu
  • Quan, Zhenhua
  • Zhao, Yaohua
  • Zhang, Wanlin
  • Yang, Mingguang
  • Chang, Zejian

Abstract

Cold thermal energy storage (CTES) technology is one of effective ways to utilize renewable energy and shift peak power load. In this paper, a novel CTES device using micro heat pipe arrays is numerically studied and optimized. Firstly, the Taguchi method is adopted to quantitatively analyze the contribution ratio (CR) of fin parameters to solidification and melting time, as well as compactness factor. Fin height has the highest CR of approximately 70 % for solidification and melting time, while fin thickness with the highest CR of 58.88 % for the compactness factor. Then, the response surface method is used to uncover the interactive effects of fin parameters and operation parameters. Next, multi-criteria optimization is performed by minimizing solidification time and heat exchange temperature difference, and maximizing the compactness factor. Compared with the original structure, the solidification time of optimized structure is reduced by 26.59 % with small heat exchange temperature difference of 4 °C and great compactness factor of 0.8219. Additionally, the phase change front of the original and the optimized CTES device are compared and analyzed to further reveal the reason for the performance improvement of the device. The research results provide inspiration and data support for the practical application of CTES.

Suggested Citation

  • Liu, Zichu & Quan, Zhenhua & Zhao, Yaohua & Zhang, Wanlin & Yang, Mingguang & Chang, Zejian, 2025. "Optimization of a cold thermal energy storage system with micro heat pipe arrays by statistical approach: Taguchi method and response surface method," Renewable Energy, Elsevier, vol. 238(C).
  • Handle: RePEc:eee:renene:v:238:y:2025:i:c:s0960148124019670
    DOI: 10.1016/j.renene.2024.121899
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124019670
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121899?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Sheng-Ju & Shiah, Sheau-Wen & Yu, Wei-Lung, 2009. "Parametric analysis of proton exchange membrane fuel cell performance by using the Taguchi method and a neural network," Renewable Energy, Elsevier, vol. 34(1), pages 135-144.
    2. Kazemian, Arash & Khatibi, Meysam & Reza Maadi, Seyed & Ma, Tao, 2021. "Performance optimization of a nanofluid-based photovoltaic thermal system integrated with nano-enhanced phase change material," Applied Energy, Elsevier, vol. 295(C).
    3. Huang, Yongping & Deng, Zilong & Chen, Yongping & Zhang, Chengbin, 2023. "Performance investigation of a biomimetic latent heat thermal energy storage device for waste heat recovery in data centers," Applied Energy, Elsevier, vol. 335(C).
    4. Naqiuddin, Nor Haziq & Saw, Lip Huat & Yew, Ming Chian & Yusof, Farazila & Poon, Hiew Mun & Cai, Zuansi & Thiam, Hui San, 2018. "Numerical investigation for optimizing segmented micro-channel heat sink by Taguchi-Grey method," Applied Energy, Elsevier, vol. 222(C), pages 437-450.
    5. Wołoszyn, Jerzy & Szopa, Krystian, 2023. "A combined heat transfer enhancement technique for shell-and-tube latent heat thermal energy storage," Renewable Energy, Elsevier, vol. 202(C), pages 1342-1356.
    6. Zhao, Yaohua & Liu, Zichu & Quan, Zhenhua & Jing, Heran & Yang, Mingguang, 2022. "Experimental investigation and multi-objective optimization of ice thermal storage device with multichannel flat tube," Renewable Energy, Elsevier, vol. 195(C), pages 28-46.
    7. Huang, Yongping & Liu, Xiangdong, 2021. "Charging and discharging enhancement of a vertical latent heat storage unit by fractal tree-shaped fins," Renewable Energy, Elsevier, vol. 174(C), pages 199-217.
    8. Yang, Xiaohu & Guo, Junfei & Yang, Bo & Cheng, Haonan & Wei, Pan & He, Ya-Ling, 2020. "Design of non-uniformly distributed annular fins for a shell-and-tube thermal energy storage unit," Applied Energy, Elsevier, vol. 279(C).
    9. Zhang, Ji & Cao, Zhi & Huang, Sheng & Huang, Xiaohui & Han, Yu & Wen, Chuang & Honoré Walther, Jens & Yang, Yan, 2023. "Solidification performance improvement of phase change materials for latent heat thermal energy storage using novel branch-structured fins and nanoparticles," Applied Energy, Elsevier, vol. 342(C).
    10. Yan, Chengchu & Shi, Wenxing & Li, Xianting & Wang, Shengwei, 2016. "A seasonal cold storage system based on separate type heat pipe for sustainable building cooling," Renewable Energy, Elsevier, vol. 85(C), pages 880-889.
    11. Huang, Xinyu & Li, Fangfei & Xiao, Tian & Guo, Junfei & Wang, Fan & Gao, Xinyu & Yang, Xiaohu & He, Ya-Ling, 2023. "Investigation and optimization of solidification performance of a triplex-tube latent heat thermal energy storage system by rotational mechanism," Applied Energy, Elsevier, vol. 331(C).
    12. Singh, Randeep & Mochizuki, Masataka & Mashiko, Koichi & Nguyen, Thang, 2011. "Heat pipe based cold energy storage systems for datacenter energy conservation," Energy, Elsevier, vol. 36(5), pages 2802-2811.
    13. Gao, Long & Gegentana, & Liu, Zhongze & Sun, Baizhong & Che, Deyong & Li, Shaohua, 2020. "Multi-objective optimization of thermal performance of packed bed latent heat thermal storage system based on response surface method," Renewable Energy, Elsevier, vol. 153(C), pages 669-680.
    14. El-Sheekh, Mostafa M. & El-Nagar, Aya A. & ElKelawy, Medhat & Bastawissi, Hagar Alm-Eldin, 2023. "Maximization of bioethanol productivity from wheat straw, performance and emission analysis of diesel engine running with a triple fuel blend through response surface methodology," Renewable Energy, Elsevier, vol. 211(C), pages 706-722.
    15. Ding, Yang & Wang, Hang & Huang, Bohou & Hu, Yige & Jiang, Feng & Ling, Xiang, 2022. "Thermal performance analysis of a 20-feet latent cold energy storage device integrated with a novel fin-plate unit for building cooling," Renewable Energy, Elsevier, vol. 200(C), pages 405-418.
    16. Liu, Shengchun & Li, Hailong & Song, Mengjie & Dai, Baomin & Sun, Zhili, 2018. "Impacts on the solidification of water on plate surface for cold energy storage using ice slurry," Applied Energy, Elsevier, vol. 227(C), pages 284-293.
    17. Cheng, Biyi & Du, Jianjun & Yao, Yingxue, 2022. "Power prediction formula for blade design and optimization of Dual Darrieus Wind Turbines based on Taguchi Method and Genetic Expression Programming model," Renewable Energy, Elsevier, vol. 192(C), pages 583-605.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Zichu & Quan, Zhenhua & Zhang, Nan & Wang, Yubo & Yang, Mingguang & Zhao, Yaohua, 2023. "Energy and exergy analysis of a novel direct-expansion ice thermal storage system based on three-fluid heat exchanger module," Applied Energy, Elsevier, vol. 330(PB).
    2. ELSihy, ELSaeed Saad & Xie, Haozhe & Wang, Tengxiao & Wang, Zuyuan, 2024. "Multi-factor numerical research on the melting dynamics improvement of an innovative gradient finned tube latent heat storage unit," Energy, Elsevier, vol. 313(C).
    3. Wang, Zhen & Wang, Yanlin & Yang, Laishun & Cui, Yi & Song, Lei & Yue, Guangxi, 2024. "Multi-objective optimization of heat charging performance of phase change materials in tree-shaped perforated fin heat exchangers," Energy, Elsevier, vol. 294(C).
    4. Wang, Jiahao & Liu, Xiaomin & Desideri, Umberto, 2024. "Performance improvement evaluation of latent heat energy storage units using improved bi-objective topology optimization method," Applied Energy, Elsevier, vol. 364(C).
    5. Hong, Yuxiang & Cheng, Zihao & Li, Qing & Jia, Shuao & Xiao, Chengxiang & Du, Juan, 2024. "Thermal energy storage, heat transfer, and thermodynamic behaviors of nano phase change material in a concentric double tube unit with triple tree fins," Renewable Energy, Elsevier, vol. 235(C).
    6. Zhao, Yaohua & Liu, Zichu & Quan, Zhenhua & Jing, Heran & Yang, Mingguang, 2022. "Experimental investigation and multi-objective optimization of ice thermal storage device with multichannel flat tube," Renewable Energy, Elsevier, vol. 195(C), pages 28-46.
    7. Wang, Zeyu & Diao, Yanhua & Zhao, Yaohua & Chen, Chuanqi & Wang, Tengyue & Liang, Lin, 2023. "Experimental and numerical studies of thermal transport in a latent heat storage unit with a plate fin and a flat heat pipe," Energy, Elsevier, vol. 275(C).
    8. Zhang, Chengbin & Wang, Huijuan & Huang, Yongping & Zhang, Liangliang & Chen, Yongping, 2025. "Immersion liquid cooling for electronics: Materials, systems, applications and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
    9. Zhang, Shuai & Li, Ying & Yan, Yuying, 2024. "Hybrid sensible-latent heat thermal energy storage using natural stones to enhance heat transfer: Energy, exergy, and economic analysis," Energy, Elsevier, vol. 286(C).
    10. Huang, Xinyu & Li, Fangfei & Xiao, Tian & Guo, Junfei & Wang, Fan & Gao, Xinyu & Yang, Xiaohu & He, Ya-Ling, 2023. "Investigation and optimization of solidification performance of a triplex-tube latent heat thermal energy storage system by rotational mechanism," Applied Energy, Elsevier, vol. 331(C).
    11. Li, Xingping & Li, Ji & Zhou, Guohui & Lv, Lucang, 2020. "Quantitative analysis of passive seasonal cold storage with a two-phase closed thermosyphon," Applied Energy, Elsevier, vol. 260(C).
    12. Liu, Hua-Yang & Hu, Yu-Peng & Yang, Guo-Yao & Wu, Chun-Mei & Li, You-Rong, 2025. "PCM melting characteristics in a sidewall-heated rectangular cavity with non-uniform longitudinal fins near the bottom," Renewable Energy, Elsevier, vol. 242(C).
    13. Zhang, Shuai & Yan, Yuying, 2023. "Evaluation and optimisation of hybrid sensible-latent heat thermal energy storage unit with natural stones to enhance heat transfer," Renewable Energy, Elsevier, vol. 215(C).
    14. Amirreza Delazar & Eric Hu & Andrei Kotousov, 2025. "New Concept of a Ground-Source Refrigeration and Air Conditioning System with Cross-Seasonal Energy Storage Capability," Energies, MDPI, vol. 18(4), pages 1-23, February.
    15. Liu, Zichu & Quan, Zhenhua & Zhao, Yaohua & Zhang, Wanlin & Yang, Mingguang & Shi, Junzhang, 2023. "Thermal performance analysis of ice thermal storage device based on micro heat pipe arrays: Role of bubble-driven flow," Renewable Energy, Elsevier, vol. 217(C).
    16. Wu, Xuehong & Hao, Kaile & Chang, Zhijuan & Lv, Cai & Cao, Shuang & Yu, Yinsheng & Tang, Songzhen & Zhang, Dongwei, 2025. "Study on temperature distribution optimization and enhanced heat transfer in shell and tube phase change accumulator," Renewable Energy, Elsevier, vol. 242(C).
    17. Huang, Yongping & Liu, Bin & Xu, Shijie & Bao, Chujin & Zhong, Yangfan & Zhang, Chengbin, 2024. "Experimental study on the immersion liquid cooling performance of high-power data center servers," Energy, Elsevier, vol. 297(C).
    18. Yan, Chengchu & Wang, Fengling & Pan, Yan & Shan, Kui & Kosonen, Risto, 2020. "A multi-timescale cold storage system within energy flexible buildings for power balance management of smart grids," Renewable Energy, Elsevier, vol. 161(C), pages 626-634.
    19. Yan, Chengchu & Shi, Wenxing & Li, Xianting & Zhao, Yang, 2016. "Optimal design and application of a compound cold storage system combining seasonal ice storage and chilled water storage," Applied Energy, Elsevier, vol. 171(C), pages 1-11.
    20. B, Prabhu & A, Valan Arasu & P, Gurusamy & A, Amala Mithin Minther Singh & T, Arunkumar, 2024. "Solar photovoltaic cooling using Paraffin phase change material: Comprehensive assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:238:y:2025:i:c:s0960148124019670. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.