IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v286y2024ics0360544223029249.html
   My bibliography  Save this article

Hybrid sensible-latent heat thermal energy storage using natural stones to enhance heat transfer: Energy, exergy, and economic analysis

Author

Listed:
  • Zhang, Shuai
  • Li, Ying
  • Yan, Yuying

Abstract

Latent heat thermal energy storage addresses the mismatch between energy supply and demand; however, phase change materials (PCM) commonly have the issue of low thermal conductivity. Natural stones, as low-cost and environmentally friendly sensible heat storage media, are used to enhance the heat transfer of the PCM in the current study. Different stone types, sizes, and filling heights are tested, and a comprehensive energy, exergy, and economic analysis is performed. Results indicate that granite has the best heat transfer enhancement performance owing to superior thermal diffusivity, which accelerates the melting by 108 % (initial temperature: 23 °C; heating temperature: 75 °C). Basalt with high specific heat contributes to the large energy capacity. The total exergy is hardly influenced by the stone size ranging from 15 mm to 40 mm, where the minimum is only 5.1 % lower than the maximum. The exergy storage rate benefits from stones surrounding the inner tube and is increased by 246 % with a filling height of 112.0 mm. The 40 mm-sized stones are the most cost-effective in the current testing conditions, and a 560 % increase in the economy is achieved. This study demonstrates a high-performance, low-cost, environmentally friendly energy storage configuration and provides comprehensive information for potential energy recovery applications.

Suggested Citation

  • Zhang, Shuai & Li, Ying & Yan, Yuying, 2024. "Hybrid sensible-latent heat thermal energy storage using natural stones to enhance heat transfer: Energy, exergy, and economic analysis," Energy, Elsevier, vol. 286(C).
  • Handle: RePEc:eee:energy:v:286:y:2024:i:c:s0360544223029249
    DOI: 10.1016/j.energy.2023.129530
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223029249
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129530?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:286:y:2024:i:c:s0360544223029249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.