IDEAS home Printed from
   My bibliography  Save this article

Recent progress in solar thermal energy storage using nanomaterials


  • Ahmed, Sumair Faisal
  • Khalid, M.
  • Rashmi, W.
  • Chan, A.
  • Shahbaz, Kaveh


Use of thermal energy storage (TES) materials in solar collectors is known to be the most effective way of storing thermal energy. The most conventional and traditional heat storage element is water. However, due to low thermal conductivity (TC) in vapor state its applications as a heat storage medium are limited. An alternative option is to utilize organic and inorganic TES materials as they both operate at low and medium temperature ranges. Organic TES materials such as paraffins are non-corrosive and possess high latent heat capacity. On the contrary, inorganic TES materials possess high density and appreciable specific heat capacity (SHC). Due to rapid progress and advancement in nanotechnology, varieties of nanomaterials were dispersed in various base fluid(s) to enhance thermo-physical properties. This review paper presents the current status and future development trends of TES materials. Furthermore, an extensive research on enhancement of TC and SHC of various TES material doped with nanomaterials has been discussed.

Suggested Citation

  • Ahmed, Sumair Faisal & Khalid, M. & Rashmi, W. & Chan, A. & Shahbaz, Kaveh, 2017. "Recent progress in solar thermal energy storage using nanomaterials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 450-460.
  • Handle: RePEc:eee:rensus:v:67:y:2017:i:c:p:450-460
    DOI: 10.1016/j.rser.2016.09.034

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Huang, Zhaowen & Gao, Xuenong & Xu, Tao & Fang, Yutang & Zhang, Zhengguo, 2014. "Thermal property measurement and heat storage analysis of LiNO3/KCl – expanded graphite composite phase change material," Applied Energy, Elsevier, vol. 115(C), pages 265-271.
    2. Xiao, Lan & Wu, Shuang-Ying & Li, You-Rong, 2012. "Advances in solar hydrogen production via two-step water-splitting thermochemical cycles based on metal redox reactions," Renewable Energy, Elsevier, vol. 41(C), pages 1-12.
    3. Medrano, Marc & Gil, Antoni & Martorell, Ingrid & Potau, Xavi & Cabeza, Luisa F., 2010. "State of the art on high-temperature thermal energy storage for power generation. Part 2--Case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 56-72, January.
    4. Wang, Zhangyuan & Yang, Wansheng & Qiu, Feng & Zhang, Xiangmei & Zhao, Xudong, 2015. "Solar water heating: From theory, application, marketing and research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 68-84.
    5. Gangnes, Byron S. & Ma, Alyson C. & Van Assche, Ari, 2014. "Global value chains and trade elasticities," Economics Letters, Elsevier, vol. 124(3), pages 482-486.
    6. Jiang, Xiang & Luo, Ruilian & Peng, Feifei & Fang, Yutang & Akiyama, Tomohiro & Wang, Shuangfeng, 2015. "Synthesis, characterization and thermal properties of paraffin microcapsules modified with nano-Al2O3," Applied Energy, Elsevier, vol. 137(C), pages 731-737.
    7. Wipo, 2014. "Global Innovation Index 2014," WIPO Economics & Statistics Series, World Intellectual Property Organization - Economics and Statistics Division, number 2014:gii.
    8. Colangelo, Gianpiero & Favale, Ernani & de Risi, Arturo & Laforgia, Domenico, 2013. "A new solution for reduced sedimentation flat panel solar thermal collector using nanofluids," Applied Energy, Elsevier, vol. 111(C), pages 80-93.
    9. Lin Ma, 2014. "Globalization And Top Income Shares," Working Papers 14-07, Center for Economic Studies, U.S. Census Bureau.
    10. Zhang, G.H. & Zhao, C.Y., 2013. "Thermal property investigation of aqueous suspensions of microencapsulated phase change material and carbon nanotubes as a novel heat transfer fluid," Renewable Energy, Elsevier, vol. 60(C), pages 433-438.
    11. Wang, Tao & Mantha, Divakar & Reddy, Ramana G., 2013. "Novel low melting point quaternary eutectic system for solar thermal energy storage," Applied Energy, Elsevier, vol. 102(C), pages 1422-1429.
    12. Oecd, 2014. "Progress towards a global nuclear liability regime," Nuclear Law Bulletin, OECD Publishing, vol. 2014(1), pages 9-23.
    13. Yousefi, Tooraj & Veysi, Farzad & Shojaeizadeh, Ehsan & Zinadini, Sirus, 2012. "An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors," Renewable Energy, Elsevier, vol. 39(1), pages 293-298.
    14. Yu, Shiyu & Wang, Xiaodong & Wu, Dezhen, 2014. "Microencapsulation of n-octadecane phase change material with calcium carbonate shell for enhancement of thermal conductivity and serving durability: Synthesis, microstructure, and performance evaluat," Applied Energy, Elsevier, vol. 114(C), pages 632-643.
    15. ., 2014. "Global + local logistics: Asian-Pacific Rim perspectives," Chapters, in: Asian-Pacific Rim Logistics, chapter 1, pages 1-24, Edward Elgar Publishing.
    16. Gil, Antoni & Medrano, Marc & Martorell, Ingrid & Lázaro, Ana & Dolado, Pablo & Zalba, Belén & Cabeza, Luisa F., 2010. "State of the art on high temperature thermal energy storage for power generation. Part 1--Concepts, materials and modellization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 31-55, January.
    17. Fan, Li-Wu & Fang, Xin & Wang, Xiao & Zeng, Yi & Xiao, Yu-Qi & Yu, Zi-Tao & Xu, Xu & Hu, Ya-Cai & Cen, Ke-Fa, 2013. "Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials," Applied Energy, Elsevier, vol. 110(C), pages 163-172.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Li, Chuanchang & Xie, Baoshan & He, Zhangxing & Chen, Jian & Long, Yi, 2019. "3D structure fungi-derived carbon stabilized stearic acid as a composite phase change material for thermal energy storage," Renewable Energy, Elsevier, vol. 140(C), pages 862-873.
    2. Huq, Mashiul & Ahmed, Sakib, 2018. "Prospects of incorporation of nanoparticles in molten salt for water purification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2814-2819.
    3. Wu, Yang & Chen, Changzhong & Jia, Yifan & Wu, Jie & Huang, Yong & Wang, Linge, 2018. "Review on electrospun ultrafine phase change fibers (PCFs) for thermal energy storage," Applied Energy, Elsevier, vol. 210(C), pages 167-181.
    4. Minea, Alina Adriana & Murshed, S. M. Sohel, 2018. "A review on development of ionic liquid based nanofluids and their heat transfer behavior," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 584-599.
    5. Huang, Xiang & Alva, Guruprasad & Jia, Yuting & Fang, Guiyin, 2017. "Morphological characterization and applications of phase change materials in thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 128-145.
    6. Fleuchaus, Paul & Godschalk, Bas & Stober, Ingrid & Blum, Philipp, 2018. "Worldwide application of aquifer thermal energy storage – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 861-876.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:67:y:2017:i:c:p:450-460. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.