Robust, double-layered phase-changing microcapsules with superior solar-thermal conversion capability and extremely high energy storage density for efficient solar energy storage
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2021.08.128
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhao, Yafei & Kong, Weixiao & Jin, Zunlong & Fu, Ye & Wang, Wencai & Zhang, Yatao & Liu, Jindun & Zhang, Bing, 2018. "Storing solar energy within Ag-Paraffin@Halloysite microspheres as a novel self-heating catalyst," Applied Energy, Elsevier, vol. 222(C), pages 180-188.
- Vishwanath Haily Dalvi & Sudhir V. Panse & Jyeshtharaj B. Joshi, 2015. "Solar thermal technologies as a bridge from fossil fuels to renewables," Nature Climate Change, Nature, vol. 5(11), pages 1007-1013, November.
- Zhou, D. & Zhao, C.Y. & Tian, Y., 2012. "Review on thermal energy storage with phase change materials (PCMs) in building applications," Applied Energy, Elsevier, vol. 92(C), pages 593-605.
- Ferrer, Gerard & Solé, Aran & Barreneche, Camila & Martorell, Ingrid & Cabeza, Luisa F., 2015. "Review on the methodology used in thermal stability characterization of phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 665-685.
- Gunasekara, Saman Nimali & Martin, Viktoria & Chiu, Justin Ningwei, 2017. "Phase equilibrium in the design of phase change materials for thermal energy storage: State-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 558-581.
- Wei, Xiao & Xue, Fei & Qi, Xiao-dong & Yang, Jing-hui & Zhou, Zuo-wan & Yuan, Yan-ping & Wang, Yong, 2019. "Photo- and electro-responsive phase change materials based on highly anisotropic microcrystalline cellulose/graphene nanoplatelet structure," Applied Energy, Elsevier, vol. 236(C), pages 70-80.
- Ahmed, Sumair Faisal & Khalid, M. & Rashmi, W. & Chan, A. & Shahbaz, Kaveh, 2017. "Recent progress in solar thermal energy storage using nanomaterials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 450-460.
- Yataganbaba, Alptug & Ozkahraman, Bengi & Kurtbas, Irfan, 2017. "Worldwide trends on encapsulation of phase change materials: A bibliometric analysis (1990–2015)," Applied Energy, Elsevier, vol. 185(P1), pages 720-731.
- Faraj, Khaireldin & Khaled, Mahmoud & Faraj, Jalal & Hachem, Farouk & Castelain, Cathy, 2020. "Phase change material thermal energy storage systems for cooling applications in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
- Li, Wei & Zhang, Xing-xiang & Wang, Xue-chen & Tang, Guo-yi & Shi, Hai-feng, 2012. "Fabrication and morphological characterization of microencapsulated phase change materials (MicroPCMs) and macrocapsules containing MicroPCMs for thermal energy storage," Energy, Elsevier, vol. 38(1), pages 249-254.
- Zhao, Manxiang & Zhang, Xu & Kong, Xiangfei, 2020. "Preparation and characterization of a novel composite phase change material with double phase change points based on nanocapsules," Renewable Energy, Elsevier, vol. 147(P1), pages 374-383.
- Parida, Bhubaneswari & Iniyan, S. & Goic, Ranko, 2011. "A review of solar photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1625-1636, April.
- Zuo, Xiaochao & Li, Jianwen & Zhao, Xiaoguang & Yang, Huaming & Chen, Deliang, 2020. "Emerging paraffin/carbon-coated nanoscroll composite phase change material for thermal energy storage," Renewable Energy, Elsevier, vol. 152(C), pages 579-589.
- Shahsavari, Amir & Akbari, Morteza, 2018. "Potential of solar energy in developing countries for reducing energy-related emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 275-291.
- Drissi, Sarra & Ling, Tung-Chai & Mo, Kim Hung, 2020. "Thermal performance of a solar energy storage concrete panel incorporating phase change material aggregates developed for thermal regulation in buildings," Renewable Energy, Elsevier, vol. 160(C), pages 817-829.
- Sharma, Atul & Tyagi, V.V. & Chen, C.R. & Buddhi, D., 2009. "Review on thermal energy storage with phase change materials and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 318-345, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wang, Bingzheng & Lu, Xiaofei & Zhang, Cancan & Wang, Hongsheng, 2022. "Cascade and hybrid processes for co-generating solar-based fuels and electricity via combining spectral splitting technology and membrane reactor," Renewable Energy, Elsevier, vol. 196(C), pages 782-799.
- Changling Wang & Guiling Zhang & Xiaosong Zhang, 2022. "Experimental and Photothermal Performance Evaluation of Multi-Wall Carbon-Nanotube-Enhanced Microencapsulation Phase Change Slurry for Efficient Photothermal Conversion and Storage," Energies, MDPI, vol. 15(20), pages 1-15, October.
- Jin, Linzhao & Tan, Yunlong & Yuan, Shunpan & Wang, Shuang & Cheng, Xu & Wang, Haibo & Du, Zongliang & Du, Xiaosheng, 2023. "Phytic acid–decorated κ-carrageenan/melanin hybrid aerogels supported phase change composites with excellent photothermal conversion efficiency and flame retardancy," Renewable Energy, Elsevier, vol. 206(C), pages 148-156.
- Haddad, Zoubida & Buonomo, Bernardo & Abu-Nada, Eiyad & Manca, Oronzio, 2024. "A comprehensive review on the properties of micro/nano-encapsulated phase change materials: Single- to multi-layered shells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 205(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
- Khan, Mohammed Mumtaz A. & Saidur, R. & Al-Sulaiman, Fahad A., 2017. "A review for phase change materials (PCMs) in solar absorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 105-137.
- Gohar Gholamibozanjani & Mohammed Farid, 2021. "A Critical Review on the Control Strategies Applied to PCM-Enhanced Buildings," Energies, MDPI, vol. 14(7), pages 1-39, March.
- Huang, Xiang & Alva, Guruprasad & Jia, Yuting & Fang, Guiyin, 2017. "Morphological characterization and applications of phase change materials in thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 128-145.
- Akeiber, Hussein & Nejat, Payam & Majid, Muhd Zaimi Abd. & Wahid, Mazlan A. & Jomehzadeh, Fatemeh & Zeynali Famileh, Iman & Calautit, John Kaiser & Hughes, Ben Richard & Zaki, Sheikh Ahmad, 2016. "A review on phase change material (PCM) for sustainable passive cooling in building envelopes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1470-1497.
- Mingli Li & Guoqing Gui & Zhibin Lin & Long Jiang & Hong Pan & Xingyu Wang, 2018. "Numerical Thermal Characterization and Performance Metrics of Building Envelopes Containing Phase Change Materials for Energy-Efficient Buildings," Sustainability, MDPI, vol. 10(8), pages 1-23, July.
- Lukas Hegner & Stefan Krimmel & Rebecca Ravotti & Dominic Festini & Jörg Worlitschek & Anastasia Stamatiou, 2021. "Experimental Feasibility Study of a Direct Contact Latent Heat Storage Using an Ester as a Bio-Based Storage Material," Energies, MDPI, vol. 14(2), pages 1-26, January.
- Gholamibozanjani, Gohar & Farid, Mohammed, 2020. "A comparison between passive and active PCM systems applied to buildings," Renewable Energy, Elsevier, vol. 162(C), pages 112-123.
- Jiang, Fuyun & Wang, Xiaodong & Wu, Dezhen, 2016. "Magnetic microencapsulated phase change materials with an organo-silica shell: Design, synthesis and application for electromagnetic shielding and thermal regulating polyimide films," Energy, Elsevier, vol. 98(C), pages 225-239.
- Li, Min & Zhou, Dongyi & Jiang, Yaqing, 2021. "Preparation and thermal storage performance of phase change ceramsite sand and thermal storage light-weight concrete," Renewable Energy, Elsevier, vol. 175(C), pages 143-152.
- Englmair, Gerald & Moser, Christoph & Furbo, Simon & Dannemand, Mark & Fan, Jianhua, 2018. "Design and functionality of a segmented heat-storage prototype utilizing stable supercooling of sodium acetate trihydrate in a solar heating system," Applied Energy, Elsevier, vol. 221(C), pages 522-534.
- Concettina Marino & Antonino Nucara & Maria Francesca Panzera & Matilde Pietrafesa & Alfredo Pudano, 2020. "Economic Comparison Between a Stand-Alone and a Grid Connected PV System vs. Grid Distance," Energies, MDPI, vol. 13(15), pages 1-22, July.
- Abdin, Z. & Alim, M.A. & Saidur, R. & Islam, M.R. & Rashmi, W. & Mekhilef, S. & Wadi, A., 2013. "Solar energy harvesting with the application of nanotechnology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 837-852.
- Puupponen, Salla & Mikkola, Valtteri & Ala-Nissila, Tapio & Seppälä, Ari, 2016. "Novel microstructured polyol–polystyrene composites for seasonal heat storage," Applied Energy, Elsevier, vol. 172(C), pages 96-106.
- Ye, Hong & Long, Linshuang & Zhang, Haitao & Zou, Ruqiang, 2014. "The performance evaluation of shape-stabilized phase change materials in building applications using energy saving index," Applied Energy, Elsevier, vol. 113(C), pages 1118-1126.
- Alvi, Jahan Zeb & Feng, Yongqiang & Wang, Qian & Imran, Muhammad & Pei, Gang, 2021. "Effect of phase change materials on the performance of direct vapor generation solar organic Rankine cycle system," Energy, Elsevier, vol. 223(C).
- Islam, Md. Parvez & Morimoto, Tetsuo, 2018. "Advances in low to medium temperature non-concentrating solar thermal technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2066-2093.
- Motte, F. & Notton, G. & Lamnatou, Chr & Cristofari, C. & Chemisana, D., 2019. "Numerical study of PCM integration impact on overall performances of a highly building-integrated solar collector," Renewable Energy, Elsevier, vol. 137(C), pages 10-19.
- Qiu, Zhongzhu & Ma, Xiaoli & Li, Peng & Zhao, Xudong & Wright, Andrew, 2017. "Micro-encapsulated phase change material (MPCM) slurries: Characterization and building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 246-262.
- Chen, Shuqin & Zhu, Yipan & Chen, Yue & Liu, Wei, 2020. "Usage strategy of phase change materials in plastic greenhouses, in hot summer and cold winter climate," Applied Energy, Elsevier, vol. 277(C).
More about this item
Keywords
Solar-thermal conversion; Phase change materials; Dopamine; Thermal energy storage;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:180:y:2021:i:c:p:725-733. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.